forked from mrq/DL-Art-School
73 lines
3.2 KiB
Python
73 lines
3.2 KiB
Python
import os
|
|
|
|
import torch
|
|
import os.path as osp
|
|
import torchvision
|
|
from torch.nn import MSELoss
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import tqdm
|
|
|
|
import trainer.eval.evaluator as evaluator
|
|
from pytorch_fid import fid_score
|
|
|
|
from data.image_pair_with_corresponding_points_dataset import ImagePairWithCorrespondingPointsDataset
|
|
from models.segformer.segformer import Segformer
|
|
from utils.util import opt_get
|
|
|
|
# Uses two datasets: a "similar" and "dissimilar" dataset, each of which contains pairs of images and similar/dissimilar
|
|
# points in those datasets. Uses the provided network to compute a latent vector for both similar and dissimilar.
|
|
# Reports a score for the l2 distance of both. A properly trained network will show similar points getting closer while
|
|
# dissimilar points remain constant or get further apart.
|
|
class SinglePointPairContrastiveEval(evaluator.Evaluator):
|
|
def __init__(self, model, opt_eval, env):
|
|
super().__init__(model, opt_eval, env)
|
|
self.batch_sz = opt_eval['batch_size']
|
|
self.eval_qty = opt_eval['quantity']
|
|
assert self.eval_qty % self.batch_sz == 0
|
|
self.similar_set = DataLoader(ImagePairWithCorrespondingPointsDataset(opt_eval['similar_set_args']), shuffle=False, batch_size=self.batch_sz)
|
|
self.dissimilar_set = DataLoader(ImagePairWithCorrespondingPointsDataset(opt_eval['dissimilar_set_args']), shuffle=False, batch_size=self.batch_sz)
|
|
# Hack to make this work with the BYOL generator. TODO: fix
|
|
self.model = self.model.online_encoder.net
|
|
|
|
def get_l2_score(self, dl, dev):
|
|
distances = []
|
|
l2 = MSELoss()
|
|
for i, data in tqdm(enumerate(dl)):
|
|
latent1 = self.model(img=data['img1'].to(dev), pos=torch.stack(data['coords1'], dim=1).to(dev))
|
|
latent2 = self.model(img=data['img2'].to(dev), pos=torch.stack(data['coords2'], dim=1).to(dev))
|
|
distances.append(l2(latent1, latent2))
|
|
if i * self.batch_sz >= self.eval_qty:
|
|
break
|
|
|
|
return torch.stack(distances).mean()
|
|
|
|
def perform_eval(self):
|
|
self.model.eval()
|
|
with torch.no_grad():
|
|
dev = next(self.model.parameters()).device
|
|
print("Computing contrastive eval on similar set")
|
|
similars = self.get_l2_score(self.similar_set, dev)
|
|
print("Computing contrastive eval on dissimilar set")
|
|
dissimilars = self.get_l2_score(self.dissimilar_set, dev)
|
|
diff = dissimilars.item() - similars.item()
|
|
print(f"Eval done. val_similar_lq: {similars.item()}; val_dissimilar_l2: {dissimilars.item()}; val_diff: {diff}")
|
|
self.model.train()
|
|
return {"val_similar_l2": similars.item(), "val_dissimilar_l2": dissimilars.item(), "val_diff": diff}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = Segformer(1024, 4).cuda()
|
|
eval = SinglePointPairContrastiveEval(model, {
|
|
'batch_size': 8,
|
|
'quantity': 32,
|
|
'similar_set_args': {
|
|
'path': 'E:\\4k6k\\datasets\\ns_images\\segformer_validation\\similar',
|
|
'size': 256
|
|
},
|
|
'dissimilar_set_args': {
|
|
'path': 'E:\\4k6k\\datasets\\ns_images\\segformer_validation\\dissimilar',
|
|
'size': 256
|
|
},
|
|
}, {})
|
|
eval.perform_eval()
|