DL-Art-School/dlas/models/image_latents/vit_latent.py
2023-03-21 15:38:42 +00:00

89 lines
3.1 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ResBlock
from models.lucidrains.x_transformers import Encoder
from trainer.networks import register_model
import torch_intermediary as ml
class VitLatent(nn.Module):
def __init__(self, top_dim, hidden_dim, depth, dropout=.1):
super().__init__()
self.upper = nn.Sequential(nn.Conv2d(3, top_dim, kernel_size=7, padding=3, stride=2),
ResBlock(top_dim, use_conv=True, dropout=dropout),
ResBlock(top_dim, out_channels=top_dim*2, down=True, use_conv=True, dropout=dropout),
ResBlock(top_dim*2, use_conv=True, dropout=dropout),
ResBlock(top_dim*2, out_channels=top_dim*4, down=True, use_conv=True, dropout=dropout),
ResBlock(top_dim*4, use_conv=True, dropout=dropout),
ResBlock(top_dim*4, out_channels=hidden_dim, down=True, use_conv=True, dropout=dropout),
nn.GroupNorm(8, hidden_dim))
self.encoder = Encoder(
dim=hidden_dim,
depth=depth,
heads=hidden_dim//64,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
ff_mult=2,
do_checkpointing=True
)
self.mlp = nn.Sequential(ml.Linear(hidden_dim, hidden_dim*2),
nn.BatchNorm1d(hidden_dim*2),
nn.ReLU(inplace=True),
ml.Linear(hidden_dim*2, hidden_dim))
def provide_ema(self, ema):
self.ema = ema
def project(self, x):
h = self.upper(x)
h = torch.flatten(h, 2).permute(0,2,1)
h = self.encoder(h)[:,0]
h_norm = F.normalize(h)
return h_norm
def forward(self, x1, x2):
h1 = self.project(x1)
#p1 = self.mlp(h1)
h2 = self.project(x2)
#p2 = self.mlp(h2)
with torch.no_grad():
he1 = self.ema.project(x1)
he2 = self.ema.project(x2)
def csim(h1, h2):
b = x1.shape[0]
sim = F.cosine_similarity(h1.unsqueeze(0), h2.unsqueeze(1).detach(), 2)
eye = torch.eye(b, device=x1.device)
neye = eye != 1
return -(sim*eye).sum()/b, (sim*neye).sum()/(b**2-b)
pos, neg = csim(h1, he2)
pos2, neg2 = csim(h2, he1)
return (pos+pos2)/2, (neg+neg2)/2
def get_grad_norm_parameter_groups(self):
return {
'upper': list(self.upper.parameters()),
'encoder': list(self.encoder.parameters()),
'mlp': list(self.mlp.parameters()),
}
@register_model
def register_vit_latent(opt_net, opt):
return VitLatent(**opt_net['kwargs'])
if __name__ == '__main__':
net = VitLatent(128, 1024, 8)
net.provide_ema(net)
x1 = torch.randn(2,3,244,244)
x2 = torch.randn(2,3,244,244)
net(x1,x2)