DL-Art-School/dlas/trainer/loss.py
2023-03-21 15:38:42 +00:00

58 lines
1.9 KiB
Python

import torch
import torch.nn as nn
import numpy as np
from utils.colors import rgb2ycbcr
class CharbonnierLoss(nn.Module):
"""Charbonnier Loss (L1)"""
def __init__(self, eps=1e-6):
super(CharbonnierLoss, self).__init__()
self.eps = eps
def forward(self, x, y):
diff = x - y
loss = torch.sum(torch.sqrt(diff * diff + self.eps))
return loss
class ZeroSpreadLoss(nn.Module):
def __init__(self):
super(ZeroSpreadLoss, self).__init__()
def forward(self, x, _):
return 2 * torch.nn.functional.sigmoid(1 / torch.abs(torch.mean(x))) - 1
# Define GAN loss: [vanilla | lsgan]
class GANLoss(nn.Module):
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0):
super(GANLoss, self).__init__()
self.gan_type = gan_type.lower()
self.real_label_val = real_label_val
self.fake_label_val = fake_label_val
if self.gan_type in ['gan', 'ragan', 'pixgan', 'pixgan_fea', 'crossgan', 'crossgan_lrref']:
self.loss = nn.BCEWithLogitsLoss()
elif self.gan_type == 'lsgan':
self.loss = nn.MSELoss()
elif self.gan_type == 'max_spread':
self.loss = ZeroSpreadLoss()
else:
raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type))
def get_target_label(self, input, target_is_real):
if target_is_real:
return torch.empty_like(input).fill_(self.real_label_val)
else:
return torch.empty_like(input).fill_(self.fake_label_val)
def forward(self, input, target_is_real):
if self.gan_type in ['pixgan', 'pixgan_fea', 'crossgan', 'crossgan_lrref'] and not isinstance(target_is_real, bool):
target_label = target_is_real
else:
target_label = self.get_target_label(input, target_is_real)
loss = self.loss(input.float(), target_label.float())
return loss