tortoise-tts/app.py

164 lines
5.8 KiB
Python
Raw Normal View History

2023-02-02 21:13:28 +00:00
import os
import argparse
import gradio as gr
import torch
2023-02-02 21:13:28 +00:00
import torchaudio
import time
2023-02-02 21:13:28 +00:00
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, progress=gr.Progress()):
if voice != "microphone":
2023-02-02 21:13:28 +00:00
voices = [voice]
else:
voices = []
if emotion == "Custom" and prompt.strip() != "":
2023-02-02 21:13:28 +00:00
text = f"[{prompt},] {text}"
elif emotion != "None":
text = f"[I am really {emotion.lower()},] {text}"
2023-02-02 21:13:28 +00:00
if voice == "microphone":
2023-02-02 21:13:28 +00:00
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
mic = load_audio(mic_audio, 22050)
voice_samples, conditioning_latents = [mic], None
2023-02-02 21:13:28 +00:00
else:
voice_samples, conditioning_latents = load_voice(voice)
if voice_samples is not None:
sample_voice = voice_samples[0]
conditioning_latents = tts.get_conditioning_latents(voice_samples)
torch.save(conditioning_latents, os.path.join(f'./tortoise/voices/{voice}/', f'latents.pth'))
voice_samples = None
else:
sample_voice = None
2023-02-02 21:13:28 +00:00
if seed == 0:
seed = None
2023-02-02 21:13:28 +00:00
start_time = time.time()
presets = {
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
'none': {'num_autoregressive_samples': num_autoregressive_samples, 'diffusion_iterations': diffusion_iterations},
}
settings = {
'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
'top_p': .8,
'cond_free_k': 2.0, 'diffusion_temperature': 1.0,
'voice_samples': voice_samples,
'conditioning_latents': conditioning_latents,
'use_deterministic_seed': seed,
'return_deterministic_state': True,
'k': candidates,
'progress': progress,
}
settings.update(presets[preset])
gen, additionals = tts.tts( text, **settings )
seed = additionals[0]
2023-02-02 21:13:28 +00:00
info = f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} preset / {num_autoregressive_samples} samples / {diffusion_iterations} iterations | Temperature: {temperature} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
with open("results.log", "a") as f:
f.write(info)
2023-02-02 21:13:28 +00:00
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
with open(os.path.join(outdir, f'input.txt'), 'w') as f:
f.write(f"{text}\n\n{info}")
2023-02-02 21:13:28 +00:00
if isinstance(gen, list):
for j, g in enumerate(gen):
torchaudio.save(os.path.join(outdir, f'result_{j}.wav'), g.squeeze(0).cpu(), 24000)
output_voice = gen[0]
2023-02-02 21:13:28 +00:00
else:
torchaudio.save(os.path.join(outdir, f'result.wav'), gen.squeeze(0).cpu(), 24000)
output_voice = gen
2023-02-02 21:13:28 +00:00
output_voice = (24000, output_voice.squeeze().cpu().numpy())
if sample_voice is not None:
sample_voice = (22050, sample_voice.squeeze().cpu().numpy())
2023-02-02 21:13:28 +00:00
return (
sample_voice,
output_voice,
seed
)
def main():
text = gr.Textbox(lines=4, label="Prompt")
2023-02-02 21:13:28 +00:00
emotion = gr.Radio(
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="None",
label="Emotion",
2023-02-02 21:13:28 +00:00
type="value",
)
prompt = gr.Textbox(lines=1, label="Custom Emotion (if selected)")
2023-02-02 21:13:28 +00:00
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality", "none"],
value="none",
label="Preset",
2023-02-02 21:13:28 +00:00
type="value",
)
candidates = gr.Slider(value=1, minimum=1, maximum=6, label="Candidates")
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
2023-02-02 21:13:28 +00:00
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + ["random", "microphone", "disabled"],
label="Voice",
2023-02-02 21:13:28 +00:00
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
2023-02-02 21:13:28 +00:00
source="microphone",
type="filepath",
)
seed = gr.Number(value=0, precision=0, label="Seed")
2023-02-02 21:13:28 +00:00
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
2023-02-02 21:13:28 +00:00
interface = gr.Interface(
fn=inference,
inputs=[
text,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature
],
outputs=[selected_voice, output_audio, usedSeed],
allow_flagging='never'
2023-02-02 21:13:28 +00:00
)
interface.queue().launch(share=args.share)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--low-vram", action='store_true', help="Disables some optimizations that increases VRAM usage")
args = parser.parse_args()
tts = TextToSpeech(minor_optimizations=not args.low_vram)
main()