forked from mrq/tortoise-tts
added loading vocoders on the fly
This commit is contained in:
parent
7b2aa51abc
commit
e2db36af60
|
@ -44,6 +44,7 @@ MODELS = {
|
|||
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
||||
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
|
||||
'bigvgan_base_24khz_100band.pth': 'https://huggingface.co/ecker/tortoise-tts-models/resolve/main/models/bigvgan_base_24khz_100band.pth',
|
||||
#'bigvgan_24khz_100band.pth': 'https://huggingface.co/ecker/tortoise-tts-models/resolve/main/models/bigvgan_24khz_100band.pth',
|
||||
}
|
||||
|
||||
def hash_file(path, algo="md5", buffer_size=0):
|
||||
|
@ -241,7 +242,7 @@ class TextToSpeech:
|
|||
Main entry point into Tortoise.
|
||||
"""
|
||||
|
||||
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, enable_redaction=True, device=None, minor_optimizations=True, input_sample_rate=22050, output_sample_rate=24000, autoregressive_model_path=None, use_bigvgan=True):
|
||||
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, enable_redaction=True, device=None, minor_optimizations=True, input_sample_rate=22050, output_sample_rate=24000, autoregressive_model_path=None, vocoder_model=None):
|
||||
"""
|
||||
Constructor
|
||||
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
||||
|
@ -253,6 +254,7 @@ class TextToSpeech:
|
|||
Default is true.
|
||||
:param device: Device to use when running the model. If omitted, the device will be automatically chosen.
|
||||
"""
|
||||
self.loading = True
|
||||
if device is None:
|
||||
device = get_device(verbose=True)
|
||||
|
||||
|
@ -278,19 +280,13 @@ class TextToSpeech:
|
|||
self.tokenizer = VoiceBpeTokenizer()
|
||||
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', models_dir)
|
||||
self.autoregressive_model_hash = hash_file(self.autoregressive_model_path)
|
||||
|
||||
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
||||
# Assume this is a traced directory.
|
||||
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
||||
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
||||
else:
|
||||
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||
model_dim=1024,
|
||||
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load(self.autoregressive_model_path))
|
||||
self.autoregressive.post_init_gpt2_config(kv_cache=self.use_kv_cache)
|
||||
self.load_autoregressive_model(self.autoregressive_model_path)
|
||||
|
||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
|
@ -305,14 +301,8 @@ class TextToSpeech:
|
|||
self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir)))
|
||||
self.cvvp = None # CVVP model is only loaded if used.
|
||||
|
||||
if use_bigvgan:
|
||||
# credit to https://github.com/deviandice / https://git.ecker.tech/mrq/ai-voice-cloning/issues/52
|
||||
self.vocoder = BigVGAN().cpu()
|
||||
self.vocoder.load_state_dict(torch.load(get_model_path('bigvgan_base_24khz_100band.pth', models_dir), map_location=torch.device('cpu'))['generator'])
|
||||
else:
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
|
||||
self.vocoder.eval(inference=True)
|
||||
self.vocoder_model = vocoder_model
|
||||
self.load_vocoder_model(self.vocoder_model)
|
||||
|
||||
# Random latent generators (RLGs) are loaded lazily.
|
||||
self.rlg_auto = None
|
||||
|
@ -323,13 +313,18 @@ class TextToSpeech:
|
|||
self.diffusion = self.diffusion.to(self.device)
|
||||
self.clvp = self.clvp.to(self.device)
|
||||
self.vocoder = self.vocoder.to(self.device)
|
||||
self.loading = False
|
||||
|
||||
def load_autoregressive_model(self, autoregressive_model_path):
|
||||
self.loading = True
|
||||
|
||||
previous_path = self.autoregressive_model_path
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', self.models_dir)
|
||||
self.autoregressive_model_hash = hash_file(self.autoregressive_model_path)
|
||||
|
||||
if hasattr(self, 'autoregressive'):
|
||||
del self.autoregressive
|
||||
|
||||
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||
model_dim=1024,
|
||||
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||
|
@ -339,8 +334,37 @@ class TextToSpeech:
|
|||
if self.preloaded_tensors:
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
self.loading = False
|
||||
|
||||
return previous_path != self.autoregressive_model_path
|
||||
def load_vocoder_model(self, vocoder_model):
|
||||
self.loading = True
|
||||
if hasattr(self, 'vocoder'):
|
||||
del self.vocoder
|
||||
|
||||
print(vocoder_model)
|
||||
if vocoder_model is None:
|
||||
vocoder_model = 'bigvgan_24khz_100band'
|
||||
|
||||
if 'bigvgan' in vocoder_model:
|
||||
# credit to https://github.com/deviandice / https://git.ecker.tech/mrq/ai-voice-cloning/issues/52
|
||||
vocoder_key = 'generator'
|
||||
self.vocoder_model_path = 'bigvgan_24khz_100band.pth'
|
||||
if f'{vocoder_model}.pth' in MODELS:
|
||||
self.vocoder_model_path = f'{vocoder_model}.pth'
|
||||
self.vocoder = BigVGAN().cpu()
|
||||
#elif vocoder_model == "univnet":
|
||||
else:
|
||||
vocoder_key = 'model_g'
|
||||
self.vocoder_model_path = 'vocoder.pth'
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
|
||||
print(vocoder_model, vocoder_key, self.vocoder_model_path)
|
||||
self.vocoder.load_state_dict(torch.load(get_model_path(self.vocoder_model_path, self.models_dir), map_location=torch.device('cpu'))[vocoder_key])
|
||||
|
||||
self.vocoder.eval(inference=True)
|
||||
if self.preloaded_tensors:
|
||||
self.vocoder = self.vocoder.to(self.device)
|
||||
self.loading = False
|
||||
|
||||
def load_cvvp(self):
|
||||
"""Load CVVP model."""
|
||||
|
|
Loading…
Reference in New Issue
Block a user