import torch import psutil import importlib DEVICE_OVERRIDE = None def has_dml(): loader = importlib.find_loader('torch_directml') if loader is None: return False import torch_directml return torch_directml.is_available() def set_device_name(name): global DEVICE_OVERRIDE DEVICE_OVERRIDE = name def get_device_name(): global DEVICE_OVERRIDE if DEVICE_OVERRIDE is not None and DEVICE_OVERRIDE != "": return DEVICE_OVERRIDE name = 'cpu' if torch.cuda.is_available(): name = 'cuda' elif has_dml(): name = 'dml' return name def get_device(verbose=False): name = get_device_name() if verbose: if name == 'cpu': print("No hardware acceleration is available, falling back to CPU...") else: print(f"Hardware acceleration found: {name}") if name == "dml": import torch_directml return torch_directml.device() return torch.device(name) def get_device_batch_size(): available = 1 name = get_device_name() if name == "dml": # there's nothing publicly accessible in the DML API that exposes this # there's a method to get currently used RAM statistics... as tiles available = 1 elif name == "cuda": _,available = torch.cuda.mem_get_info() elif name == "cpu": available = psutil.virtual_memory()[4] availableGb = available / (1024 ** 3) print(f"Total device memory available: {availableGb}") if availableGb > 18: print(f"Setting AutoRegressive Batch Size to: 32") print(f"Damn. Nice GPU Dude.") return 32 elif availableGb > 14: print(f"Setting AutoRegressive Batch Size to: 16") return 16 elif availableGb > 10: print(f"Setting AutoRegressive Batch Size to: 8") return 8 elif availableGb > 7: print(f"Setting AutoRegressive Batch Size to: 4") return 4 print(f"Setting AutoRegressive Batch Size to: 1") print(f"Don't cry about it if it doesn't work.") return 1 def get_device_count(name=get_device_name()): if name == "cuda": return torch.cuda.device_count() if name == "dml": import torch_directml return torch_directml.device_count() return 1 if has_dml(): _cumsum = torch.cumsum _repeat_interleave = torch.repeat_interleave _multinomial = torch.multinomial _Tensor_new = torch.Tensor.new _Tensor_cumsum = torch.Tensor.cumsum _Tensor_repeat_interleave = torch.Tensor.repeat_interleave _Tensor_multinomial = torch.Tensor.multinomial torch.cumsum = lambda input, *args, **kwargs: ( _cumsum(input.to("cpu"), *args, **kwargs).to(input.device) ) torch.repeat_interleave = lambda input, *args, **kwargs: ( _repeat_interleave(input.to("cpu"), *args, **kwargs).to(input.device) ) torch.multinomial = lambda input, *args, **kwargs: ( _multinomial(input.to("cpu"), *args, **kwargs).to(input.device) ) torch.Tensor.new = lambda self, *args, **kwargs: ( _Tensor_new(self.to("cpu"), *args, **kwargs).to(self.device) ) torch.Tensor.cumsum = lambda self, *args, **kwargs: ( _Tensor_cumsum(self.to("cpu"), *args, **kwargs).to(self.device) ) torch.Tensor.repeat_interleave = lambda self, *args, **kwargs: ( _Tensor_repeat_interleave(self.to("cpu"), *args, **kwargs).to(self.device) ) torch.Tensor.multinomial = lambda self, *args, **kwargs: ( _Tensor_multinomial(self.to("cpu"), *args, **kwargs).to(self.device) )