tortoise-tts/app.py

304 lines
12 KiB
Python
Executable File

import os
import argparse
import gradio as gr
import torch
import torchaudio
import time
import json
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
from tortoise.utils.text import split_and_recombine_text
import music_tag
def generate(text, delimiter, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, breathing_room, experimentals, progress=gr.Progress()):
if voice != "microphone":
voices = [voice]
else:
voices = []
if voice == "microphone":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
mic = load_audio(mic_audio, 22050)
voice_samples, conditioning_latents = [mic], None
else:
progress(0, desc="Loading voice...")
voice_samples, conditioning_latents = load_voice(voice)
if voice_samples is not None:
sample_voice = voice_samples[0]
conditioning_latents = tts.get_conditioning_latents(voice_samples, progress=progress, max_chunk_size=args.cond_latent_max_chunk_size)
torch.save(conditioning_latents, os.path.join(f'./tortoise/voices/{voice}/', f'cond_latents.pth'))
voice_samples = None
else:
sample_voice = None
if seed == 0:
seed = None
start_time = time.time()
settings = {
'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
'top_p': .8,
'cond_free_k': 2.0, 'diffusion_temperature': 1.0,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'voice_samples': voice_samples,
'conditioning_latents': conditioning_latents,
'use_deterministic_seed': seed,
'return_deterministic_state': True,
'k': candidates,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'progress': progress,
'half_p': "Half Precision" in experimentals,
'cond_free': "Conditioning-Free" in experimentals,
}
if delimiter == "\\n":
delimiter = "\n"
if delimiter != "" and delimiter in text:
texts = text.split(delimiter)
else:
texts = split_and_recombine_text(text)
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
audio_cache = {}
for line, cut_text in enumerate(texts):
if emotion == "Custom" and prompt.strip() != "":
cut_text = f"[{prompt},] {cut_text}"
elif emotion != "None":
cut_text = f"[I am really {emotion.lower()},] {cut_text}"
print(f"[{str(line+1)}/{str(len(texts))}] Generating line: {cut_text}")
gen, additionals = tts.tts(cut_text, **settings )
seed = additionals[0]
if isinstance(gen, list):
for j, g in enumerate(gen):
audio = g.squeeze(0).cpu()
audio_cache[f"candidate_{j}/result_{line}.wav"] = {
'audio': audio,
'text': cut_text,
}
os.makedirs(os.path.join(outdir, f'candidate_{j}'), exist_ok=True)
torchaudio.save(os.path.join(outdir, f'candidate_{j}/result_{line}.wav'), audio, 24000)
else:
audio = gen.squeeze(0).cpu()
audio_cache[f"result_{line}.wav"] = {
'audio': audio,
'text': cut_text,
}
torchaudio.save(os.path.join(outdir, f'result_{line}.wav'), audio, 24000)
output_voice = None
if len(texts) > 1:
for candidate in range(candidates):
audio_clips = []
for line in range(len(texts)):
if isinstance(gen, list):
audio = audio_cache[f'candidate_{candidate}/result_{line}.wav']['audio']
else:
audio = audio_cache[f'result_{line}.wav']['audio']
audio_clips.append(audio)
audio_clips = torch.cat(audio_clips, dim=-1)
torchaudio.save(os.path.join(outdir, f'combined_{candidate}.wav'), audio_clips, 24000)
if output_voice is None:
output_voice = (24000, audio_clips.squeeze().cpu().numpy())
else:
if isinstance(gen, list):
output_voice = gen[0]
else:
output_voice = gen
output_voice = (24000, output_voice.squeeze().cpu().numpy())
info = {
'text': text,
'delimiter': delimiter,
'emotion': emotion,
'prompt': prompt,
'voice': voice,
'mic_audio': mic_audio,
'preset': preset,
'seed': seed,
'candidates': candidates,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'temperature': temperature,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'experimentals': experimentals,
'time': time.time()-start_time,
}
with open(os.path.join(outdir, f'input.txt'), 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
print(f"Saved to '{outdir}'")
for path in audio_cache:
info['text'] = audio_cache[path]['text']
metadata = music_tag.load_file(os.path.join(outdir, path))
metadata['lyrics'] = json.dumps(info)
metadata.save()
if sample_voice is not None:
sample_voice = (22050, sample_voice.squeeze().cpu().numpy())
audio_clips = []
return (
sample_voice,
output_voice,
seed
)
def update_presets(value):
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
else:
return (gr.update(), gr.update())
def update_voices():
return gr.Dropdown.update(choices=os.listdir(os.path.join("tortoise", "voices")) + ["microphone"])
def main():
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
text = gr.Textbox(lines=4, label="Prompt")
delimiter = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
emotion = gr.Radio(
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="None",
label="Emotion",
type="value",
interactive=True
)
prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + ["microphone"],
label="Voice",
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
source="microphone",
type="filepath",
)
refresh_voices = gr.Button(value="Refresh Voice List")
refresh_voices.click(update_voices,
inputs=None,
outputs=voice
)
prompt.change(fn=lambda value: gr.update(value="Custom"),
inputs=prompt,
outputs=emotion
)
mic_audio.change(fn=lambda value: gr.update(value="microphone"),
inputs=mic_audio,
outputs=voice
)
with gr.Column():
candidates = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
seed = gr.Number(value=0, precision=0, label="Seed")
preset = gr.Radio(
["Ultra Fast", "Fast", "Standard", "High Quality", "None"],
value="None",
label="Preset",
type="value",
)
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
breathing_room = gr.Slider(value=12, minimum=1, maximum=32, step=1, label="Pause Size")
diffusion_sampler = gr.Radio(
["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"],
value="P",
label="Diffusion Samplers",
type="value",
)
experimentals = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags")
preset.change(fn=update_presets,
inputs=preset,
outputs=[
num_autoregressive_samples,
diffusion_iterations,
],
)
with gr.Column():
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
submit = gr.Button(value="Generate")
#stop = gr.Button(value="Stop")
submit_event = submit.click(generate,
inputs=[
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
experimentals,
],
outputs=[selected_voice, output_audio, usedSeed],
)
#stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
demo.queue().launch(share=args.share)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--low-vram", action='store_true', help="Disables some optimizations that increases VRAM usage")
parser.add_argument("--cond-latent-max-chunk-size", type=int, default=1000000, help="Sets an upper limit to audio chunk size when computing conditioning latents")
args = parser.parse_args()
tts = TextToSpeech(minor_optimizations=not args.low_vram)
main()