forked from camenduru/ai-voice-cloning
Farewell, parasite
This commit is contained in:
parent
2424c455cb
commit
b90c164778
|
@ -1,5 +1,4 @@
|
|||
git+https://github.com/openai/whisper.git
|
||||
git+https://github.com/m-bain/whisperx.git
|
||||
|
||||
more-itertools
|
||||
ffmpeg-python
|
||||
|
|
39
src/utils.py
39
src/utils.py
|
@ -39,9 +39,9 @@ from tortoise.utils.device import get_device_name, set_device_name, get_device_c
|
|||
|
||||
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
|
||||
|
||||
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"]
|
||||
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"]
|
||||
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
|
||||
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
|
||||
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp"]
|
||||
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band']
|
||||
|
||||
GENERATE_SETTINGS_ARGS = None
|
||||
|
@ -1032,7 +1032,7 @@ def whisper_transcribe( file, language=None ):
|
|||
|
||||
return whisper_model.transcribe(file, language=language)
|
||||
|
||||
elif args.whisper_backend == "lightmare/whispercpp":
|
||||
if args.whisper_backend == "lightmare/whispercpp":
|
||||
res = whisper_model.transcribe(file)
|
||||
segments = whisper_model.extract_text_and_timestamps( res )
|
||||
|
||||
|
@ -1046,23 +1046,6 @@ def whisper_transcribe( file, language=None ):
|
|||
'text': segment[2],
|
||||
}
|
||||
result['segments'].append(reparsed)
|
||||
|
||||
return result
|
||||
|
||||
# credit to https://git.ecker.tech/yqxtqymn for the busywork of getting this added
|
||||
elif args.whisper_backend == "m-bain/whisperx":
|
||||
import whisperx
|
||||
device = "cuda" if get_device_name() == "cuda" else "cpu"
|
||||
result = whisper_model.transcribe(file)
|
||||
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
||||
result_aligned = whisperx.align(result["segments"], model_a, metadata, file, device)
|
||||
|
||||
for i in range(len(result_aligned['segments'])):
|
||||
del result_aligned['segments'][i]['word-segments']
|
||||
del result_aligned['segments'][i]['char-segments']
|
||||
|
||||
result['segments'] = result_aligned['segments']
|
||||
|
||||
return result
|
||||
|
||||
def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_audio=False, progress=None ):
|
||||
|
@ -1072,9 +1055,6 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_a
|
|||
if whisper_model is None:
|
||||
load_whisper_model(language=language)
|
||||
|
||||
if args.whisper_backend == "m-bain/whisperx" and slice_audio:
|
||||
print("! CAUTION ! Slicing audio with whisperx is terrible. Please consider using a different whisper backend if you want to slice audio.")
|
||||
|
||||
os.makedirs(f'{outdir}/audio/', exist_ok=True)
|
||||
|
||||
results = {}
|
||||
|
@ -1708,7 +1688,7 @@ def setup_args():
|
|||
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
|
||||
|
||||
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
|
||||
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp, m-bain/whisperx)")
|
||||
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp)")
|
||||
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
|
||||
|
||||
parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp")
|
||||
|
@ -2069,12 +2049,13 @@ def unload_voicefixer():
|
|||
def load_whisper_model(language=None, model_name=None, progress=None):
|
||||
global whisper_model
|
||||
|
||||
if model_name == "m-bain/whisperx":
|
||||
print("WhisperX has been removed. Reverting to openai/whisper. Apologies for the inconvenience.")
|
||||
model_name = "openai/whisper"
|
||||
|
||||
if args.whisper_backend not in WHISPER_BACKENDS:
|
||||
raise Exception(f"unavailable backend: {args.whisper_backend}")
|
||||
|
||||
if args.whisper_backend != "m-bain/whisperx" and model_name == "large-v2":
|
||||
raise Exception("large-v2 is only available for m-bain/whisperx backend")
|
||||
|
||||
if not model_name:
|
||||
model_name = args.whisper_model
|
||||
else:
|
||||
|
@ -2097,10 +2078,6 @@ def load_whisper_model(language=None, model_name=None, progress=None):
|
|||
|
||||
b_lang = language.encode('ascii')
|
||||
whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang)
|
||||
elif args.whisper_backend == "m-bain/whisperx":
|
||||
import whisperx
|
||||
device = "cuda" if get_device_name() == "cuda" else "cpu"
|
||||
whisper_model = whisperx.load_model(model_name, device)
|
||||
|
||||
print("Loaded Whisper model")
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user