forked from camenduru/ai-voice-cloning
preparations for training an IPA-based finetune
This commit is contained in:
parent
7b80f7a42f
commit
ee8270bdfb
121
models/tokenizers/ipa.json
Executable file
121
models/tokenizers/ipa.json
Executable file
|
@ -0,0 +1,121 @@
|
|||
{
|
||||
"version": "1.0",
|
||||
"truncation": null,
|
||||
"padding": null,
|
||||
"added_tokens":
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"special": true,
|
||||
"content": "[STOP]",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"special": true,
|
||||
"content": "[UNK]",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"special": true,
|
||||
"content": "[SPACE]",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
}
|
||||
],
|
||||
"normalizer": null,
|
||||
"pre_tokenizer": null,
|
||||
"post_processor": null,
|
||||
"decoder": null,
|
||||
"model":
|
||||
{
|
||||
"type": "BPE",
|
||||
"dropout": null,
|
||||
"unk_token": "[UNK]",
|
||||
"continuing_subword_prefix": null,
|
||||
"end_of_word_suffix": null,
|
||||
"fuse_unk": false,
|
||||
"vocab":
|
||||
{
|
||||
"[STOP]": 0,
|
||||
"[UNK]": 1,
|
||||
"[SPACE]": 2,
|
||||
"!": 3,
|
||||
"'": 4,
|
||||
"(": 5,
|
||||
")": 6,
|
||||
",": 7,
|
||||
"-": 8,
|
||||
".": 9,
|
||||
"/": 10,
|
||||
":": 11,
|
||||
";": 12,
|
||||
"?": 13,
|
||||
"a": 14,
|
||||
"aɪ": 15,
|
||||
"aʊ": 16,
|
||||
"b": 17,
|
||||
"d": 18,
|
||||
"d͡": 19,
|
||||
"d͡ʒ": 20,
|
||||
"e": 21,
|
||||
"eɪ": 22,
|
||||
"f": 23,
|
||||
"h": 24,
|
||||
"i": 25,
|
||||
"j": 26,
|
||||
"k": 27,
|
||||
"l": 28,
|
||||
"m": 29,
|
||||
"n": 30,
|
||||
"o": 31,
|
||||
"oʊ": 32,
|
||||
"p": 33,
|
||||
"s": 34,
|
||||
"t": 35,
|
||||
"t͡": 36,
|
||||
"t͡ʃ": 37,
|
||||
"u": 38,
|
||||
"v": 39,
|
||||
"w": 40,
|
||||
"z": 41,
|
||||
"|": 42,
|
||||
"æ": 43,
|
||||
"ð": 44,
|
||||
"ŋ": 45,
|
||||
"ɑ": 46,
|
||||
"ɔ": 47,
|
||||
"ɔɪ": 48,
|
||||
"ə": 49,
|
||||
"ɚ": 50,
|
||||
"ɛ": 51,
|
||||
"ɡ": 52,
|
||||
"ɪ": 53,
|
||||
"ɹ": 54,
|
||||
"ʃ": 55,
|
||||
"ʊ": 56,
|
||||
"ʌ": 57,
|
||||
"ʒ": 58,
|
||||
"θ": 59
|
||||
},
|
||||
"merges":
|
||||
[
|
||||
"a ɪ",
|
||||
"a ʊ",
|
||||
"d͡ ʒ",
|
||||
"e ɪ",
|
||||
"o ʊ",
|
||||
"t͡ ʃ",
|
||||
"ɔ ɪ"
|
||||
]
|
||||
}
|
||||
}
|
|
@ -1 +1 @@
|
|||
Subproject commit b253da6e353f0170c3eb60fe299c41d2fa21db50
|
||||
Subproject commit 730a04708d2cb29f526c3397894950a2733e6e29
|
|
@ -1 +1 @@
|
|||
Subproject commit 42cb1f36741aa3a24e7aab03e73b51becd182fa7
|
||||
Subproject commit 99618694db4cd7b77e68b62753bb8e2418ac0d55
|
65
src/utils.py
65
src/utils.py
|
@ -20,8 +20,7 @@ import subprocess
|
|||
import psutil
|
||||
import yaml
|
||||
import hashlib
|
||||
import io
|
||||
import gzip
|
||||
import string
|
||||
|
||||
import tqdm
|
||||
import torch
|
||||
|
@ -40,6 +39,13 @@ from tortoise.utils.text import split_and_recombine_text
|
|||
from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram, get_device_batch_size, do_gc
|
||||
|
||||
from whisper.normalizers.english import EnglishTextNormalizer
|
||||
from whisper.normalizers.basic import BasicTextNormalizer
|
||||
from whisper.tokenizer import LANGUAGES
|
||||
|
||||
try:
|
||||
from phonemizer import phonemize as phonemizer
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
|
||||
|
||||
|
@ -64,7 +70,7 @@ VALLE_ENABLED = False
|
|||
|
||||
try:
|
||||
from vall_e.emb.qnt import encode as quantize
|
||||
from vall_e.emb.g2p import encode as phonemize
|
||||
# from vall_e.emb.g2p import encode as phonemize
|
||||
|
||||
VALLE_ENABLED = True
|
||||
except Exception as e:
|
||||
|
@ -1157,7 +1163,6 @@ def transcribe_dataset( voice, language=None, skip_existings=False, progress=Non
|
|||
if whisper_model is None:
|
||||
load_whisper_model(language=language)
|
||||
|
||||
|
||||
results = {}
|
||||
|
||||
files = sorted( get_voices(load_latents=False)[voice] )
|
||||
|
@ -1175,14 +1180,15 @@ def transcribe_dataset( voice, language=None, skip_existings=False, progress=Non
|
|||
if basename in results and skip_existings:
|
||||
print(f"Skipping already parsed file: {basename}")
|
||||
else:
|
||||
results[basename] = whisper_transcribe(file, language=language)
|
||||
result = whisper_transcribe(file, language=language)
|
||||
results[basename] = result
|
||||
|
||||
waveform, sample_rate = torchaudio.load(file)
|
||||
# resample to the input rate, since it'll get resampled for training anyways
|
||||
# this should also "help" increase throughput a bit when filling the dataloaders
|
||||
waveform, sample_rate = resample(waveform, sample_rate, tts.input_sample_rate if tts is not None else 22050)
|
||||
|
||||
torchaudio.save(f"{indir}/audio/{basename}", waveform, sample_rate)
|
||||
torchaudio.save(f"{indir}/audio/{basename}", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
|
||||
|
||||
with open(infile, 'w', encoding="utf-8") as f:
|
||||
f.write(json.dumps(results, indent='\t'))
|
||||
|
@ -1248,18 +1254,28 @@ def slice_dataset( voice, trim_silence=True, start_offset=0, end_offset=0, resul
|
|||
messages.append(message)
|
||||
continue
|
||||
sliced, _ = resample( sliced, sample_rate, 22050 )
|
||||
torchaudio.save(f"{indir}/audio/{file}", sliced, 22050)
|
||||
torchaudio.save(f"{indir}/audio/{file}", sliced, 22050, encoding="PCM_S", bits_per_sample=16)
|
||||
|
||||
segments +=1
|
||||
|
||||
messages.append(f"Sliced segments: {files} => {segments}.")
|
||||
return "\n".join(messages)
|
||||
|
||||
def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=True ):
|
||||
"""
|
||||
def phonemizer( text, language="eng" ):
|
||||
transducer = make_g2p(language, f'{language}-ipa')
|
||||
phones = transducer(text).output_string
|
||||
ignored = [" "] + [ p for p in string.punctuation ]
|
||||
return ["_" if p in ignored else p for p in phones]
|
||||
"""
|
||||
|
||||
def prepare_dataset( voice, use_segments=False, text_length=0, audio_length=0, normalize=True ):
|
||||
indir = f'./training/{voice}/'
|
||||
infile = f'{indir}/whisper.json'
|
||||
messages = []
|
||||
|
||||
phonemize = phonemize=args.tokenizer_json[-8:] == "ipa.json"
|
||||
|
||||
if not os.path.exists(infile):
|
||||
raise Exception(f"Missing dataset: {infile}")
|
||||
|
||||
|
@ -1272,13 +1288,20 @@ def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=T
|
|||
'supervisions': [],
|
||||
}
|
||||
|
||||
normalizer = EnglishTextNormalizer() if normalize else None
|
||||
|
||||
errored = 0
|
||||
for filename in results:
|
||||
result = results[filename]
|
||||
use_segment = use_segments
|
||||
|
||||
result = results[filename]
|
||||
language = LANGUAGES[result['language']] if result['language'] in LANGUAGES else None
|
||||
if language == "english":
|
||||
language = "en-us"
|
||||
|
||||
normalizer = None
|
||||
if normalize:
|
||||
normalizer = EnglishTextNormalizer() if language.lower()[:2] == "en" else BasicTextNormalizer()
|
||||
|
||||
# check if unsegmented text exceeds 200 characters
|
||||
if not use_segment:
|
||||
if len(result['text']) > 200:
|
||||
|
@ -1325,7 +1348,14 @@ def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=T
|
|||
continue
|
||||
|
||||
text = segment['text'].strip()
|
||||
normalized_text = normalizer(text) if normalize and result['language'] == "en" else text
|
||||
normalized_text = normalizer(text) if normalize else None
|
||||
try:
|
||||
phonemes = phonemizer( text, language=language, preserve_punctuation=True, strip=True ) if phonemize else None
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
if phonemize and phonemes:
|
||||
text = phonemes
|
||||
|
||||
if len(text) > 200:
|
||||
message = f"Text length too long (200 < {len(text)}), skipping... {file}"
|
||||
|
@ -1351,10 +1381,6 @@ def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=T
|
|||
if not culled and audio_length > 0:
|
||||
culled = duration < audio_length
|
||||
|
||||
# for when i add in a little treat ;), as it requires normalized text
|
||||
if normalize and len(normalized_text) < 200:
|
||||
line = f'audio/{file}|{text}|{normalized_text}'
|
||||
else:
|
||||
line = f'audio/{file}|{text}'
|
||||
|
||||
lines['training' if not culled else 'validation'].append(line)
|
||||
|
@ -1365,7 +1391,7 @@ def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=T
|
|||
os.makedirs(f'{indir}/valle/', exist_ok=True)
|
||||
|
||||
from vall_e.emb.qnt import encode as quantize
|
||||
from vall_e.emb.g2p import encode as phonemize
|
||||
# from vall_e.emb.g2p import encode as phonemize
|
||||
|
||||
if waveform.shape[0] == 2:
|
||||
waveform = waveform[:1]
|
||||
|
@ -1373,8 +1399,8 @@ def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=T
|
|||
quantized = quantize( waveform, sample_rate ).cpu()
|
||||
torch.save(quantized, f'{indir}/valle/{file.replace(".wav",".qnt.pt")}')
|
||||
|
||||
phonemes = phonemize(normalized_text)
|
||||
open(f'{indir}/valle/{file.replace(".wav",".phn.txt")}', 'w', encoding='utf-8').write(" ".join(phonemes))
|
||||
# phonemes = phonemizer(normalized_text)
|
||||
open(f'{indir}/valle/{file.replace(".wav",".phn.txt")}', 'w', encoding='utf-8').write(" ".join(text))
|
||||
|
||||
training_joined = "\n".join(lines['training'])
|
||||
validation_joined = "\n".join(lines['validation'])
|
||||
|
@ -1536,8 +1562,10 @@ def save_training_settings( **kwargs ):
|
|||
|
||||
if settings['save_rate'] < 1:
|
||||
settings['save_rate'] = 1
|
||||
"""
|
||||
if settings['validation_rate'] < 1:
|
||||
settings['validation_rate'] = 1
|
||||
"""
|
||||
|
||||
settings['validation_batch_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size'])
|
||||
|
||||
|
@ -1554,7 +1582,6 @@ def save_training_settings( **kwargs ):
|
|||
settings['validation_enabled'] = False
|
||||
messages.append("Validation batch size == 0, disabling validation...")
|
||||
else:
|
||||
settings['validation_enabled'] = True
|
||||
with open(settings['validation_path'], 'r', encoding="utf-8") as f:
|
||||
validation_lines = len(f.readlines())
|
||||
|
||||
|
|
|
@ -443,7 +443,7 @@ def setup_gradio():
|
|||
DATASET_SETTINGS['validation_text_length'] = gr.Number(label="Validation Text Length Threshold", value=12, precision=0)
|
||||
DATASET_SETTINGS['validation_audio_length'] = gr.Number(label="Validation Audio Length Threshold", value=1 )
|
||||
with gr.Row():
|
||||
DATASET_SETTINGS['skip'] = gr.Checkbox(label="Skip Already Transcribed", value=False)
|
||||
DATASET_SETTINGS['skip'] = gr.Checkbox(label="Skip Existing", value=False)
|
||||
DATASET_SETTINGS['slice'] = gr.Checkbox(label="Slice Segments", value=False)
|
||||
DATASET_SETTINGS['trim_silence'] = gr.Checkbox(label="Trim Silence", value=False)
|
||||
with gr.Row():
|
||||
|
@ -496,6 +496,7 @@ def setup_gradio():
|
|||
with gr.Row():
|
||||
TRAINING_SETTINGS["half_p"] = gr.Checkbox(label="Half Precision", value=args.training_default_halfp)
|
||||
TRAINING_SETTINGS["bitsandbytes"] = gr.Checkbox(label="BitsAndBytes", value=args.training_default_bnb)
|
||||
TRAINING_SETTINGS["validation_enabled"] = gr.Checkbox(label="Validation Enabled", value=False)
|
||||
|
||||
with gr.Row():
|
||||
TRAINING_SETTINGS["workers"] = gr.Number(label="Worker Processes", value=2, precision=0)
|
||||
|
|
Loading…
Reference in New Issue
Block a user