import os import argparse import time import json import base64 import re import inspect import urllib.request import torch import torchaudio import music_tag import gradio as gr import gradio.utils from datetime import datetime import tortoise.api from tortoise.utils.audio import get_voice_dir, get_voices from tortoise.utils.device import get_device_count from utils import * args = setup_args() GENERATE_SETTINGS = {} TRANSCRIBE_SETTINGS = {} EXEC_SETTINGS = {} TRAINING_SETTINGS = {} GENERATE_SETTINGS_ARGS = [] PRESETS = { 'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False}, 'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80}, 'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200}, 'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400}, } HISTORY_HEADERS = { "Name": "", "Samples": "num_autoregressive_samples", "Iterations": "diffusion_iterations", "Temp.": "temperature", "Sampler": "diffusion_sampler", "CVVP": "cvvp_weight", "Top P": "top_p", "Diff. Temp.": "diffusion_temperature", "Len Pen": "length_penalty", "Rep Pen": "repetition_penalty", "Cond-Free K": "cond_free_k", "Time": "time", "Datetime": "datetime", "Model": "model", "Model Hash": "model_hash", } # can't use *args OR **kwargs if I want to retain the ability to use progress def generate_proxy( text, delimiter, emotion, prompt, voice, mic_audio, voice_latents_chunks, candidates, seed, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, breathing_room, cvvp_weight, top_p, diffusion_temperature, length_penalty, repetition_penalty, cond_free_k, experimentals, progress=gr.Progress(track_tqdm=True) ): kwargs = locals() try: sample, outputs, stats = generate(**kwargs) except Exception as e: message = str(e) if message == "Kill signal detected": unload_tts() raise e return ( outputs[0], gr.update(value=sample, visible=sample is not None), gr.update(choices=outputs, value=outputs[0], visible=len(outputs) > 1, interactive=True), gr.update(value=stats, visible=True), ) def update_presets(value): if value in PRESETS: preset = PRESETS[value] return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations'])) else: return (gr.update(), gr.update()) def get_training_configs(): configs = [] for i, file in enumerate(sorted(os.listdir(f"./training/"))): if file[-5:] != ".yaml" or file[0] == ".": continue configs.append(f"./training/{file}") return configs def update_training_configs(): return gr.update(choices=get_training_list()) def history_view_results( voice ): results = [] files = [] outdir = f"./results/{voice}/" for i, file in enumerate(sorted(os.listdir(outdir))): if file[-4:] != ".wav": continue metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False) if metadata is None: continue values = [] for k in HISTORY_HEADERS: v = file if k != "Name": v = metadata[HISTORY_HEADERS[k]] if HISTORY_HEADERS[k] in metadata else '?' values.append(v) files.append(file) results.append(values) return ( results, gr.Dropdown.update(choices=sorted(files)) ) def import_generate_settings_proxy( file=None ): global GENERATE_SETTINGS_ARGS settings = import_generate_settings( file ) res = [] for k in GENERATE_SETTINGS_ARGS: res.append(settings[k] if k in settings else None) return tuple(res) def compute_latents_proxy(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)): compute_latents( voice=voice, voice_latents_chunks=voice_latents_chunks, progress=progress ) return voice def import_voices_proxy(files, name, progress=gr.Progress(track_tqdm=True)): import_voices(files, name, progress) return gr.update() def read_generate_settings_proxy(file, saveAs='.temp'): j, latents = read_generate_settings(file) if latents: outdir = f'{get_voice_dir()}/{saveAs}/' os.makedirs(outdir, exist_ok=True) with open(f'{outdir}/cond_latents.pth', 'wb') as f: f.write(latents) latents = f'{outdir}/cond_latents.pth' return ( gr.update(value=j, visible=j is not None), gr.update(value=latents, visible=latents is not None), None if j is None else j['voice'], gr.update(visible=j is not None), ) def prepare_dataset_proxy( voice, language, validation_text_length, validation_audio_length, skip_existings, slice_audio, progress=gr.Progress(track_tqdm=True) ): messages = [] message = prepare_dataset( get_voices(load_latents=False)[voice], outdir=f"./training/{voice}/", language=language, skip_existings=skip_existings, progress=progress ) messages.append(message) if slice_audio: message = slice_dataset( voice ) messages.append(message) if validation_text_length > 0 or validation_audio_length > 0: message = prepare_validation_dataset( voice, text_length=validation_text_length, audio_length=validation_audio_length ) messages.append(message) return "\n".join(messages) def update_args_proxy( *args ): kwargs = {} keys = list(EXEC_SETTINGS.keys()) for i in range(len(args)): k = keys[i] v = args[i] kwargs[k] = v update_args(**kwargs) def optimize_training_settings_proxy( *args ): kwargs = {} keys = list(TRAINING_SETTINGS.keys()) for i in range(len(args)): k = keys[i] v = args[i] kwargs[k] = v settings, messages = optimize_training_settings(**kwargs) output = list(settings.values()) return output[:-1] + ["\n".join(messages)] def import_training_settings_proxy( voice ): messages = [] injson = f'./training/{voice}/train.json' statedir = f'./training/{voice}/finetune/training_state/' output = {} try: with open(injson, 'r', encoding="utf-8") as f: settings = json.loads(f.read()) except: messages.append(f"Error import /{voice}/train.json") for k in TRAINING_SETTINGS: output[k] = TRAINING_SETTINGS[k].value output = list(output.values()) return output[:-1] + ["\n".join(messages)] if os.path.isdir(statedir): resumes = sorted([int(d[:-6]) for d in os.listdir(statedir) if d[-6:] == ".state" ]) if len(resumes) > 0: settings['resume_state'] = f'{statedir}/{resumes[-1]}.state' messages.append(f"Found most recent training state: {settings['resume_state']}") output = {} for k in TRAINING_SETTINGS: if k not in settings: continue output[k] = settings[k] output = list(output.values()) messages.append(f"Imported training settings: {injson}") return output[:-1] + ["\n".join(messages)] def save_training_settings_proxy( *args ): kwargs = {} keys = list(TRAINING_SETTINGS.keys()) for i in range(len(args)): k = keys[i] v = args[i] kwargs[k] = v settings, messages = save_training_settings(**kwargs) return "\n".join(messages) def update_voices(): return ( gr.Dropdown.update(choices=get_voice_list(append_defaults=True)), gr.Dropdown.update(choices=get_voice_list()), gr.Dropdown.update(choices=get_voice_list("./results/")), ) def history_copy_settings( voice, file ): return import_generate_settings( f"./results/{voice}/{file}" ) def setup_gradio(): global args global ui if not args.share: def noop(function, return_value=None): def wrapped(*args, **kwargs): return return_value return wrapped gradio.utils.version_check = noop(gradio.utils.version_check) gradio.utils.initiated_analytics = noop(gradio.utils.initiated_analytics) gradio.utils.launch_analytics = noop(gradio.utils.launch_analytics) gradio.utils.integration_analytics = noop(gradio.utils.integration_analytics) gradio.utils.error_analytics = noop(gradio.utils.error_analytics) gradio.utils.log_feature_analytics = noop(gradio.utils.log_feature_analytics) #gradio.utils.get_local_ip_address = noop(gradio.utils.get_local_ip_address, 'localhost') if args.models_from_local_only: os.environ['TRANSFORMERS_OFFLINE']='1' voice_list_with_defaults = get_voice_list(append_defaults=True) voice_list = get_voice_list() result_voices = get_voice_list("./results/") autoregressive_models = get_autoregressive_models() dataset_list = get_dataset_list() global GENERATE_SETTINGS_ARGS GENERATE_SETTINGS_ARGS = list(inspect.signature(generate_proxy).parameters.keys())[:-1] for i in range(len(GENERATE_SETTINGS_ARGS)): arg = GENERATE_SETTINGS_ARGS[i] GENERATE_SETTINGS[arg] = None with gr.Blocks() as ui: with gr.Tab("Generate"): with gr.Row(): with gr.Column(): GENERATE_SETTINGS["text"] = gr.Textbox(lines=4, label="Input Prompt") with gr.Row(): with gr.Column(): GENERATE_SETTINGS["delimiter"] = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n") GENERATE_SETTINGS["emotion"] = gr.Radio( ["Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom", "None"], value="None", label="Emotion", type="value", interactive=True ) GENERATE_SETTINGS["prompt"] = gr.Textbox(lines=1, label="Custom Emotion", visible=False) GENERATE_SETTINGS["voice"] = gr.Dropdown(choices=voice_list_with_defaults, label="Voice", type="value", value=voice_list_with_defaults[0]) # it'd be very cash money if gradio was able to default to the first value in the list without this shit GENERATE_SETTINGS["mic_audio"] = gr.Audio( label="Microphone Source", source="microphone", type="filepath", visible=False ) GENERATE_SETTINGS["voice_latents_chunks"] = gr.Number(label="Voice Chunks", precision=0, value=0) with gr.Row(): refresh_voices = gr.Button(value="Refresh Voice List") recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents") GENERATE_SETTINGS["voice"].change( fn=update_baseline_for_latents_chunks, inputs=GENERATE_SETTINGS["voice"], outputs=GENERATE_SETTINGS["voice_latents_chunks"] ) GENERATE_SETTINGS["voice"].change( fn=lambda value: gr.update(visible=value == "microphone"), inputs=GENERATE_SETTINGS["voice"], outputs=GENERATE_SETTINGS["mic_audio"], ) with gr.Column(): GENERATE_SETTINGS["candidates"] = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates") GENERATE_SETTINGS["seed"] = gr.Number(value=0, precision=0, label="Seed") preset = gr.Radio( ["Ultra Fast", "Fast", "Standard", "High Quality"], label="Preset", type="value" ) GENERATE_SETTINGS["num_autoregressive_samples"] = gr.Slider(value=128, minimum=2, maximum=512, step=1, label="Samples") GENERATE_SETTINGS["diffusion_iterations"] = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations") GENERATE_SETTINGS["temperature"] = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature") show_experimental_settings = gr.Checkbox(label="Show Experimental Settings") reset_generation_settings_button = gr.Button(value="Reset to Default") with gr.Column(visible=False) as col: experimental_column = col GENERATE_SETTINGS["experimentals"] = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags") GENERATE_SETTINGS["breathing_room"] = gr.Slider(value=8, minimum=1, maximum=32, step=1, label="Pause Size") GENERATE_SETTINGS["diffusion_sampler"] = gr.Radio( ["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"], value="DDIM", label="Diffusion Samplers", type="value" ) GENERATE_SETTINGS["cvvp_weight"] = gr.Slider(value=0, minimum=0, maximum=1, label="CVVP Weight") GENERATE_SETTINGS["top_p"] = gr.Slider(value=0.8, minimum=0, maximum=1, label="Top P") GENERATE_SETTINGS["diffusion_temperature"] = gr.Slider(value=1.0, minimum=0, maximum=1, label="Diffusion Temperature") GENERATE_SETTINGS["length_penalty"] = gr.Slider(value=1.0, minimum=0, maximum=8, label="Length Penalty") GENERATE_SETTINGS["repetition_penalty"] = gr.Slider(value=2.0, minimum=0, maximum=8, label="Repetition Penalty") GENERATE_SETTINGS["cond_free_k"] = gr.Slider(value=2.0, minimum=0, maximum=4, label="Conditioning-Free K") with gr.Column(): with gr.Row(): submit = gr.Button(value="Generate") stop = gr.Button(value="Stop") generation_results = gr.Dataframe(label="Results", headers=["Seed", "Time"], visible=False) source_sample = gr.Audio(label="Source Sample", visible=False) output_audio = gr.Audio(label="Output") candidates_list = gr.Dropdown(label="Candidates", type="value", visible=False, choices=[""], value="") def change_candidate( val ): if not val: return return val candidates_list.change( fn=change_candidate, inputs=candidates_list, outputs=output_audio, ) with gr.Tab("History"): with gr.Row(): with gr.Column(): history_info = gr.Dataframe(label="Results", headers=list(HISTORY_HEADERS.keys())) with gr.Row(): with gr.Column(): history_voices = gr.Dropdown(choices=result_voices, label="Voice", type="value", value=result_voices[0] if len(result_voices) > 0 else "") with gr.Column(): history_results_list = gr.Dropdown(label="Results",type="value", interactive=True, value="") with gr.Column(): history_audio = gr.Audio() history_copy_settings_button = gr.Button(value="Copy Settings") with gr.Tab("Utilities"): with gr.Row(): with gr.Column(): audio_in = gr.Files(type="file", label="Audio Input", file_types=["audio"]) import_voice_name = gr.Textbox(label="Voice Name") import_voice_button = gr.Button(value="Import Voice") with gr.Column(visible=False) as col: utilities_metadata_column = col metadata_out = gr.JSON(label="Audio Metadata") copy_button = gr.Button(value="Copy Settings") latents_out = gr.File(type="binary", label="Voice Latents") with gr.Tab("Training"): with gr.Tab("Prepare Dataset"): with gr.Row(): with gr.Column(): DATASET_SETTINGS = {} DATASET_SETTINGS['voice'] = gr.Dropdown( choices=voice_list, label="Dataset Source", type="value", value=voice_list[0] if len(voice_list) > 0 else "" ) with gr.Row(): DATASET_SETTINGS['language'] = gr.Textbox(label="Language", value="en") DATASET_SETTINGS['validation_text_length'] = gr.Number(label="Validation Text Length Threshold", value=12, precision=0) DATASET_SETTINGS['validation_audio_length'] = gr.Number(label="Validation Audio Length Threshold", value=1 ) with gr.Row(): DATASET_SETTINGS['skip'] = gr.Checkbox(label="Skip Already Transcribed", value=False) DATASET_SETTINGS['slice'] = gr.Checkbox(label="Slice Segments", value=False) with gr.Row(): transcribe_button = gr.Button(value="Transcribe") prepare_validation_button = gr.Button(value="(Re)Create Validation Dataset") slice_dataset_button = gr.Button(value="(Re)Slice Audio") with gr.Row(): EXEC_SETTINGS['whisper_backend'] = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend) EXEC_SETTINGS['whisper_model'] = gr.Dropdown(WHISPER_MODELS, label="Whisper Model", value=args.whisper_model) dataset_settings = list(DATASET_SETTINGS.values()) with gr.Column(): prepare_dataset_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8) with gr.Tab("Generate Configuration"): with gr.Row(): with gr.Column(): TRAINING_SETTINGS["epochs"] = gr.Number(label="Epochs", value=500, precision=0) with gr.Row(): TRAINING_SETTINGS["learning_rate"] = gr.Slider(label="Learning Rate", value=1e-5, minimum=0, maximum=1e-4, step=1e-6) TRAINING_SETTINGS["text_ce_lr_weight"] = gr.Slider(label="Text_CE LR Ratio", value=0.01, minimum=0, maximum=1) with gr.Row(): lr_schemes = list(LEARNING_RATE_SCHEMES.keys()) TRAINING_SETTINGS["learning_rate_scheme"] = gr.Radio(lr_schemes, label="Learning Rate Scheme", value=lr_schemes[0], type="value") TRAINING_SETTINGS["learning_rate_schedule"] = gr.Textbox(label="Learning Rate Schedule", placeholder=str(LEARNING_RATE_SCHEDULE), visible=True) TRAINING_SETTINGS["learning_rate_restarts"] = gr.Number(label="Learning Rate Restarts", value=4, precision=0, visible=False) TRAINING_SETTINGS["learning_rate_scheme"].change( fn=lambda x: ( gr.update(visible=x == lr_schemes[0]), gr.update(visible=x == lr_schemes[1]) ), inputs=TRAINING_SETTINGS["learning_rate_scheme"], outputs=[ TRAINING_SETTINGS["learning_rate_schedule"], TRAINING_SETTINGS["learning_rate_restarts"], ] ) with gr.Row(): TRAINING_SETTINGS["batch_size"] = gr.Number(label="Batch Size", value=128, precision=0) TRAINING_SETTINGS["gradient_accumulation_size"] = gr.Number(label="Gradient Accumulation Size", value=4, precision=0) with gr.Row(): TRAINING_SETTINGS["save_rate"] = gr.Number(label="Save Frequency (in epochs)", value=5, precision=0) TRAINING_SETTINGS["validation_rate"] = gr.Number(label="Validation Frequency (in epochs)", value=5, precision=0) with gr.Row(): TRAINING_SETTINGS["half_p"] = gr.Checkbox(label="Half Precision", value=args.training_default_halfp) TRAINING_SETTINGS["bitsandbytes"] = gr.Checkbox(label="BitsAndBytes", value=args.training_default_bnb) with gr.Row(): TRAINING_SETTINGS["workers"] = gr.Number(label="Worker Processes", value=2, precision=0) TRAINING_SETTINGS["gpus"] = gr.Number(label="GPUs", value=get_device_count(), precision=0) TRAINING_SETTINGS["source_model"] = gr.Dropdown( choices=autoregressive_models, label="Source Model", type="value", value=autoregressive_models[0] ) TRAINING_SETTINGS["resume_state"] = gr.Textbox(label="Resume State Path", placeholder="./training/${voice}/finetune/training_state/${last_state}.state") TRAINING_SETTINGS["voice"] = gr.Dropdown( choices=dataset_list, label="Dataset", type="value", value=dataset_list[0] if len(dataset_list) else "" ) with gr.Row(): training_refresh_dataset = gr.Button(value="Refresh Dataset List") training_import_settings = gr.Button(value="Reuse/Import Dataset") with gr.Column(): training_configuration_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8) with gr.Row(): training_optimize_configuration = gr.Button(value="Validate Training Configuration") training_save_configuration = gr.Button(value="Save Training Configuration") with gr.Tab("Run Training"): with gr.Row(): with gr.Column(): training_configs = gr.Dropdown(label="Training Configuration", choices=get_training_list()) refresh_configs = gr.Button(value="Refresh Configurations") training_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8) verbose_training = gr.Checkbox(label="Verbose Console Output", value=True) training_keep_x_past_datasets = gr.Slider(label="Keep X Previous States", minimum=0, maximum=8, value=0, step=1) with gr.Row(): start_training_button = gr.Button(value="Train") stop_training_button = gr.Button(value="Stop") reconnect_training_button = gr.Button(value="Reconnect") with gr.Column(): training_loss_graph = gr.LinePlot(label="Training Metrics", x="step", y="value", title="Training Metrics", color="type", tooltip=['step', 'value', 'type'], width=500, height=350, ) training_lr_graph = gr.LinePlot(label="Training Metrics", x="step", y="value", title="Training Metrics", color="type", tooltip=['step', 'value', 'type'], width=500, height=350, ) view_losses = gr.Button(value="View Losses") with gr.Tab("Settings"): with gr.Row(): exec_inputs = [] with gr.Column(): EXEC_SETTINGS['listen'] = gr.Textbox(label="Listen", value=args.listen, placeholder="127.0.0.1:7860/") EXEC_SETTINGS['share'] = gr.Checkbox(label="Public Share Gradio", value=args.share) EXEC_SETTINGS['check_for_updates'] = gr.Checkbox(label="Check For Updates", value=args.check_for_updates) EXEC_SETTINGS['models_from_local_only'] = gr.Checkbox(label="Only Load Models Locally", value=args.models_from_local_only) EXEC_SETTINGS['low_vram'] = gr.Checkbox(label="Low VRAM", value=args.low_vram) EXEC_SETTINGS['embed_output_metadata'] = gr.Checkbox(label="Embed Output Metadata", value=args.embed_output_metadata) EXEC_SETTINGS['latents_lean_and_mean'] = gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean) EXEC_SETTINGS['voice_fixer'] = gr.Checkbox(label="Use Voice Fixer on Generated Output", value=args.voice_fixer) EXEC_SETTINGS['voice_fixer_use_cuda'] = gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda) EXEC_SETTINGS['force_cpu_for_conditioning_latents'] = gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents) EXEC_SETTINGS['defer_tts_load'] = gr.Checkbox(label="Do Not Load TTS On Startup", value=args.defer_tts_load) EXEC_SETTINGS['prune_nonfinal_outputs'] = gr.Checkbox(label="Delete Non-Final Output", value=args.prune_nonfinal_outputs) EXEC_SETTINGS['device_override'] = gr.Textbox(label="Device Override", value=args.device_override) with gr.Column(): EXEC_SETTINGS['sample_batch_size'] = gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size) EXEC_SETTINGS['concurrency_count'] = gr.Number(label="Gradio Concurrency Count", precision=0, value=args.concurrency_count) EXEC_SETTINGS['autocalculate_voice_chunk_duration_size'] = gr.Number(label="Auto-Calculate Voice Chunk Duration (in seconds)", precision=0, value=args.autocalculate_voice_chunk_duration_size) EXEC_SETTINGS['output_volume'] = gr.Slider(label="Output Volume", minimum=0, maximum=2, value=args.output_volume) EXEC_SETTINGS['autoregressive_model'] = gr.Dropdown(choices=autoregressive_models, label="Autoregressive Model", value=args.autoregressive_model if args.autoregressive_model else autoregressive_models[0]) EXEC_SETTINGS['vocoder_model'] = gr.Dropdown(VOCODERS, label="Vocoder", value=args.vocoder_model if args.vocoder_model else VOCODERS[-1]) EXEC_SETTINGS['training_default_halfp'] = TRAINING_SETTINGS['half_p'] EXEC_SETTINGS['training_default_bnb'] = TRAINING_SETTINGS['bitsandbytes'] with gr.Row(): autoregressive_models_update_button = gr.Button(value="Refresh Model List") gr.Button(value="Check for Updates").click(check_for_updates) gr.Button(value="(Re)Load TTS").click( reload_tts, inputs=EXEC_SETTINGS['autoregressive_model'], outputs=None ) # kill_button = gr.Button(value="Close UI") def update_model_list_proxy( val ): autoregressive_models = get_autoregressive_models() if val not in autoregressive_models: val = autoregressive_models[0] return gr.update( choices=autoregressive_models, value=val ) autoregressive_models_update_button.click( update_model_list_proxy, inputs=EXEC_SETTINGS['autoregressive_model'], outputs=EXEC_SETTINGS['autoregressive_model'], ) exec_inputs = list(EXEC_SETTINGS.values()) for k in EXEC_SETTINGS: EXEC_SETTINGS[k].change( fn=update_args_proxy, inputs=exec_inputs ) EXEC_SETTINGS['autoregressive_model'].change( fn=update_autoregressive_model, inputs=EXEC_SETTINGS['autoregressive_model'], outputs=None ) EXEC_SETTINGS['vocoder_model'].change( fn=update_vocoder_model, inputs=EXEC_SETTINGS['vocoder_model'], outputs=None ) history_voices.change( fn=history_view_results, inputs=history_voices, outputs=[ history_info, history_results_list, ] ) history_results_list.change( fn=lambda voice, file: f"./results/{voice}/{file}", inputs=[ history_voices, history_results_list, ], outputs=history_audio ) audio_in.upload( fn=read_generate_settings_proxy, inputs=audio_in, outputs=[ metadata_out, latents_out, import_voice_name, utilities_metadata_column, ] ) import_voice_button.click( fn=import_voices_proxy, inputs=[ audio_in, import_voice_name, ], outputs=import_voice_name #console_output ) show_experimental_settings.change( fn=lambda x: gr.update(visible=x), inputs=show_experimental_settings, outputs=experimental_column ) preset.change(fn=update_presets, inputs=preset, outputs=[ GENERATE_SETTINGS['num_autoregressive_samples'], GENERATE_SETTINGS['diffusion_iterations'], ], ) recompute_voice_latents.click(compute_latents_proxy, inputs=[ GENERATE_SETTINGS['voice'], GENERATE_SETTINGS['voice_latents_chunks'], ], outputs=GENERATE_SETTINGS['voice'], ) GENERATE_SETTINGS['emotion'].change( fn=lambda value: gr.update(visible=value == "Custom"), inputs=GENERATE_SETTINGS['emotion'], outputs=GENERATE_SETTINGS['prompt'] ) GENERATE_SETTINGS['mic_audio'].change(fn=lambda value: gr.update(value="microphone"), inputs=GENERATE_SETTINGS['mic_audio'], outputs=GENERATE_SETTINGS['voice'] ) refresh_voices.click(update_voices, inputs=None, outputs=[ GENERATE_SETTINGS['voice'], dataset_settings[0], history_voices ] ) generate_settings = list(GENERATE_SETTINGS.values()) submit.click( lambda: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)), outputs=[source_sample, candidates_list, generation_results], ) submit_event = submit.click(generate_proxy, inputs=generate_settings, outputs=[output_audio, source_sample, candidates_list, generation_results], api_name="generate", ) copy_button.click(import_generate_settings_proxy, inputs=audio_in, # JSON elements cannot be used as inputs outputs=generate_settings ) reset_generation_settings_button.click( fn=reset_generation_settings, inputs=None, outputs=generate_settings ) history_copy_settings_button.click(history_copy_settings, inputs=[ history_voices, history_results_list, ], outputs=generate_settings ) refresh_configs.click( lambda: gr.update(choices=get_training_list()), inputs=None, outputs=training_configs ) start_training_button.click(run_training, inputs=[ training_configs, verbose_training, training_keep_x_past_datasets, ], outputs=[ training_output, ], ) training_output.change( fn=update_training_dataplot, inputs=None, outputs=[ training_loss_graph, training_lr_graph, ], show_progress=False, ) view_losses.click( fn=update_training_dataplot, inputs=[ training_configs ], outputs=[ training_loss_graph, training_lr_graph, ], ) stop_training_button.click(stop_training, inputs=None, outputs=training_output #console_output ) reconnect_training_button.click(reconnect_training, inputs=[ verbose_training, ], outputs=training_output #console_output ) transcribe_button.click( prepare_dataset_proxy, inputs=dataset_settings, outputs=prepare_dataset_output #console_output ) prepare_validation_button.click( prepare_validation_dataset, inputs=[ dataset_settings[0], DATASET_SETTINGS['validation_text_length'], DATASET_SETTINGS['validation_audio_length'], ], outputs=prepare_dataset_output #console_output ) slice_dataset_button.click( slice_dataset, inputs=[ dataset_settings[0] ], outputs=prepare_dataset_output ) training_refresh_dataset.click( lambda: gr.update(choices=get_dataset_list()), inputs=None, outputs=TRAINING_SETTINGS["voice"], ) training_settings = list(TRAINING_SETTINGS.values()) training_optimize_configuration.click(optimize_training_settings_proxy, inputs=training_settings, outputs=training_settings[:-1] + [training_configuration_output] #console_output ) training_import_settings.click(import_training_settings_proxy, inputs=TRAINING_SETTINGS['voice'], outputs=training_settings[:-1] + [training_configuration_output] #console_output ) training_save_configuration.click(save_training_settings_proxy, inputs=training_settings, outputs=training_configuration_output #console_output ) if os.path.isfile('./config/generate.json'): ui.load(import_generate_settings_proxy, inputs=None, outputs=generate_settings) if args.check_for_updates: ui.load(check_for_updates) stop.click(fn=cancel_generate, inputs=None, outputs=None) ui.queue(concurrency_count=args.concurrency_count) webui = ui return webui