ai-voice-cloningmrq/models/.template.dlas.yaml

139 lines
4.1 KiB
YAML
Executable File

name: '${voice}'
model: extensibletrainer
scale: 1
gpu_ids: [0] # Manually edit this if the GPU you want to train on is not your primary, as this will set the env var that exposes CUDA devices
start_step: 0
checkpointing_enabled: true
fp16: ${half_p}
bitsandbytes: ${bitsandbytes}
gpus: ${gpus}
datasets:
train:
name: training
n_workers: ${workers}
batch_size: ${batch_size}
mode: paired_voice_audio
path: ${dataset_path}
fetcher_mode: ['lj']
phase: train
max_wav_length: 255995 # ~11.6 seconds
max_text_length: 200
sample_rate: 22050
load_conditioning: True
num_conditioning_candidates: 2
conditioning_length: 44000
use_bpe_tokenizer: True
tokenizer_vocab: ${tokenizer_json} # ./models/tortoise/bpe_lowercase_asr_256.json
load_aligned_codes: False
val:
name: validation
n_workers: ${workers}
batch_size: ${validation_batch_size}
mode: paired_voice_audio
path: ${validation_path}
fetcher_mode: ['lj']
phase: val
max_wav_length: 255995
max_text_length: 200
sample_rate: 22050
load_conditioning: True
num_conditioning_candidates: 2
conditioning_length: 44000
use_bpe_tokenizer: True
tokenizer_vocab: ${tokenizer_json} # ./models/tortoise/bpe_lowercase_asr_256.json
load_aligned_codes: False
steps:
gpt_train:
training: gpt
loss_log_buffer: 500
# Generally follows the recipe from the DALLE paper.
optimizer: ${optimizer} # this should be adamw_zero if you're using distributed training
optimizer_params:
lr: !!float ${learning_rate} # originally: 1e-4
weight_decay: !!float 1e-2
beta1: 0.9
beta2: 0.96
clip_grad_eps: 4
injectors:
paired_to_mel:
type: torch_mel_spectrogram
mel_norm_file: ./modules/tortoise-tts/tortoise/data/mel_norms.pth # ./models/tortoise/clips_mel_norms.pth
in: wav
out: paired_mel
paired_cond_to_mel:
type: for_each
subtype: torch_mel_spectrogram
mel_norm_file: ./modules/tortoise-tts/tortoise/data/mel_norms.pth # ./models/tortoise/clips_mel_norms.pth
in: conditioning
out: paired_conditioning_mel
to_codes:
type: discrete_token
in: paired_mel
out: paired_mel_codes
dvae_config: "./models/tortoise/train_diffusion_vocoder_22k_level.yml"
paired_fwd_text:
type: generator
generator: gpt
in: [paired_conditioning_mel, padded_text, text_lengths, paired_mel_codes, wav_lengths]
out: [loss_text_ce, loss_mel_ce, logits]
losses:
text_ce:
type: direct
weight: ${text_lr_weight}
key: loss_text_ce
mel_ce:
type: direct
weight: ${mel_lr_weight}
key: loss_mel_ce
networks:
gpt:
type: generator
which_model_G: unified_voice2
kwargs:
layers: 30 # originally: 8
model_dim: 1024 # originally: 512
heads: 16 # originally: 8
max_text_tokens: 402 # originally: 120
max_mel_tokens: 604 # originally: 250
max_conditioning_inputs: 2 # originally: 1
mel_length_compression: 1024
number_text_tokens: 256 # supposed to be 255 for newer unified_voice files
number_mel_codes: 8194
start_mel_token: 8192
stop_mel_token: 8193
start_text_token: 255
train_solo_embeddings: False # missing in uv3/4
use_mel_codes_as_input: True # ditto
checkpointing: True
tortoise_compat: True
# freeze_everything_but_position_embeddings: True
path:
strict_load: true
${source_model}
${resume_state}
train:
niter: ${iterations}
warmup_iter: -1
mega_batch_factor: ${gradient_accumulation_size}
val_freq: ${validation_rate}
ema_enabled: false # I really don't think EMA matters
${learning_rate_scheme}
eval:
pure: ${validation_enabled}
output_state: gen
logger:
save_checkpoint_freq: ${save_rate}
visuals: [gen, mel]
visual_debug_rate: ${save_rate}
is_mel_spectrogram: true