forked from mrq/tortoise-tts
169 lines
5.6 KiB
Python
Executable File
169 lines
5.6 KiB
Python
Executable File
import os
|
|
import argparse
|
|
import gradio as gr
|
|
import torchaudio
|
|
import time
|
|
from datetime import datetime
|
|
from tortoise.api import TextToSpeech
|
|
from tortoise.utils.audio import load_audio, load_voice, load_voices
|
|
|
|
VOICE_OPTIONS = [
|
|
"random", # special option for random voice
|
|
"custom", # special option for custom voice
|
|
"disabled", # special option for disabled voice
|
|
]
|
|
|
|
|
|
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature):
|
|
if voice != "custom":
|
|
voices = [voice]
|
|
else:
|
|
voices = []
|
|
|
|
if emotion != "None/Custom":
|
|
text = f"[I am really {emotion.lower()},] {text}"
|
|
elif prompt.strip() != "":
|
|
text = f"[{prompt},] {text}"
|
|
|
|
c = None
|
|
if voice == "custom":
|
|
if mic_audio is None:
|
|
raise gr.Error("Please provide audio from mic when choosing custom voice")
|
|
c = load_audio(mic_audio, 22050)
|
|
|
|
|
|
if len(voices) == 1 or len(voices) == 0:
|
|
if voice == "custom":
|
|
voice_samples, conditioning_latents = [c], None
|
|
else:
|
|
voice_samples, conditioning_latents = load_voice(voice)
|
|
else:
|
|
voice_samples, conditioning_latents = load_voices(voices)
|
|
if voice == "custom":
|
|
voice_samples.extend([c])
|
|
|
|
sample_voice = voice_samples[0] if len(voice_samples) else None
|
|
|
|
start_time = time.time()
|
|
if preset == "custom":
|
|
gen, _ = tts.tts_with_preset(
|
|
text,
|
|
voice_samples=voice_samples,
|
|
conditioning_latents=conditioning_latents,
|
|
preset="standard",
|
|
use_deterministic_seed=seed,
|
|
return_deterministic_state=True,
|
|
k=candidates,
|
|
num_autoregressive_samples=num_autoregressive_samples,
|
|
diffusion_iterations=diffusion_iterations,
|
|
temperature=temperature,
|
|
)
|
|
else:
|
|
gen, _ = tts.tts_with_preset(
|
|
text,
|
|
voice_samples=voice_samples,
|
|
conditioning_latents=conditioning_latents,
|
|
preset=preset,
|
|
use_deterministic_seed=seed,
|
|
return_deterministic_state=True,
|
|
k=candidates,
|
|
temperature=temperature,
|
|
)
|
|
|
|
with open("Tortoise_TTS_Runs.log", "a") as f:
|
|
f.write(
|
|
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
|
|
)
|
|
|
|
timestamp = int(time.time())
|
|
outdir = f"./results/{voice}/{timestamp}/"
|
|
|
|
os.makedirs(outdir, exist_ok=True)
|
|
|
|
with open(os.path.join(outdir, f'input.txt'), 'w') as f:
|
|
f.write(text)
|
|
|
|
if isinstance(gen, list):
|
|
for j, g in enumerate(gen):
|
|
torchaudio.save(os.path.join(outdir, f'result_{j}.wav'), g.squeeze(0).cpu(), 24000)
|
|
return (
|
|
(22050, sample_voice.squeeze().cpu().numpy()),
|
|
(24000, gen[0].squeeze().cpu().numpy()),
|
|
)
|
|
else:
|
|
torchaudio.save(os.path.join(outdir, f'result.wav'), gen.squeeze(0).cpu(), 24000)
|
|
return (
|
|
(22050, sample_voice.squeeze().cpu().numpy()),
|
|
(24000, gen.squeeze().cpu().numpy()),
|
|
)
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
|
|
args = parser.parse_args()
|
|
|
|
text = gr.Textbox(lines=4, label="Text:")
|
|
emotion = gr.Radio(
|
|
["None/Custom", "Happy", "Sad", "Angry", "Disgusted", "Arrogant"],
|
|
value="None/Custom",
|
|
label="Select emotion:",
|
|
type="value",
|
|
)
|
|
prompt = gr.Textbox(lines=1, label="Enter prompt if [Custom] emotion:")
|
|
preset = gr.Radio(
|
|
["ultra_fast", "fast", "standard", "high_quality", "custom"],
|
|
value="custom",
|
|
label="Preset mode (determines quality with tradeoff over speed):",
|
|
type="value",
|
|
)
|
|
candidates = gr.Number(value=1, precision=0, label="Candidates")
|
|
num_autoregressive_samples = gr.Number(value=128, precision=0, label="Autoregressive samples:")
|
|
diffusion_iterations = gr.Number(value=128, precision=0, label="Diffusion iterations (quality in audio clip)")
|
|
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
|
|
|
|
voice = gr.Dropdown(
|
|
os.listdir(os.path.join("tortoise", "voices")) + VOICE_OPTIONS,
|
|
value="angie",
|
|
label="Select voice:",
|
|
type="value",
|
|
)
|
|
mic_audio = gr.Audio(
|
|
label="Record voice (when selected custom):",
|
|
source="microphone",
|
|
type="filepath",
|
|
)
|
|
seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):")
|
|
|
|
selected_voice = gr.Audio(label="Sample of selected voice (first):")
|
|
output_audio = gr.Audio(label="Output:")
|
|
|
|
interface = gr.Interface(
|
|
fn=inference,
|
|
inputs=[
|
|
text,
|
|
emotion,
|
|
prompt,
|
|
voice,
|
|
mic_audio,
|
|
preset,
|
|
seed,
|
|
candidates,
|
|
num_autoregressive_samples,
|
|
diffusion_iterations,
|
|
temperature
|
|
],
|
|
outputs=[selected_voice, output_audio],
|
|
)
|
|
interface.queue().launch(share=args.share)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tts = TextToSpeech()
|
|
|
|
with open("Tortoise_TTS_Runs.log", "a") as f:
|
|
f.write(
|
|
f"\n\n-------------------------Tortoise TTS Logs, {datetime.now()}-------------------------\n"
|
|
)
|
|
|
|
main()
|