1
0

actually make using adamw_zero optimizer for multi-gpus work

This commit is contained in:
mrq 2023-03-08 15:31:33 +00:00
parent 8494628f3c
commit 34dcb845b5
3 changed files with 34 additions and 11 deletions

View File

@ -126,9 +126,7 @@ train:
ema_enabled: false # I really don't think EMA matters
default_lr_scheme: MultiStepLR
gen_lr_steps: ${gen_lr_steps} #[50000, 100000, 140000, 180000]
lr_gamma: 0.5
${learning_rate_scheme}
eval:
pure: ${validation_enabled}

View File

@ -20,15 +20,10 @@ if __name__ == "__main__":
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
args.opt = " ".join(args.opt) # absolutely disgusting
with open(args.opt, 'r') as file:
opt_config = yaml.safe_load(file)
if "WORLD_SIZE" in os.environ:
if int(os.environ["WORLD_SIZE"]) > 1 and opt_config["steps"]["gpt_train"]["optimizer"] == "adamw":
opt_config["steps"]["gpt_train"]["optimizer"] = "adamw_zero"
if "ext" in opt_config and "bitsandbytes" in opt_config["ext"] and not opt_config["ext"]["bitsandbytes"]:
os.environ['BITSANDBYTES_OVERRIDE_LINEAR'] = '0'
os.environ['BITSANDBYTES_OVERRIDE_EMBEDDING'] = '0'

View File

@ -1008,6 +1008,21 @@ def run_training(config_path, verbose=False, gpus=1, keep_x_past_checkpoints=0,
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
torch.multiprocessing.freeze_support()
# edit any gpu-count-specific variables
with open(config_path, 'r', encoding="utf-8") as f:
yaml_string = f.read()
edited = False
if gpus > 1:
yaml_string = yaml_string.replace(" adamw ", " adamw_zero ")
edited = True
else:
yaml_string = yaml_string.replace(" adamw_zero ", " adamw ")
edited = True
if edited:
print(f'Modified YAML config')
with open(config_path, 'w', encoding="utf-8") as f:
f.write(yaml_string)
unload_tts()
unload_whisper()
unload_voicefixer()
@ -1347,7 +1362,7 @@ def optimize_training_settings( epochs, learning_rate, text_ce_lr_weight, learni
messages
)
def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weight=None, learning_rate_schedule=None, batch_size=None, gradient_accumulation_size=None, print_rate=None, save_rate=None, validation_rate=None, name=None, dataset_name=None, dataset_path=None, validation_name=None, validation_path=None, validation_batch_size=None, output_name=None, resume_path=None, half_p=None, bnb=None, workers=None, source_model=None ):
def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weight=None, learning_rate_scheme=None, learning_rate_schedule=None, batch_size=None, gradient_accumulation_size=None, print_rate=None, save_rate=None, validation_rate=None, name=None, dataset_name=None, dataset_path=None, validation_name=None, validation_path=None, validation_batch_size=None, output_name=None, resume_path=None, half_p=None, bnb=None, workers=None, source_model=None ):
if not source_model:
source_model = f"./models/tortoise/autoregressive{'_half' if half_p else ''}.pth"
@ -1355,7 +1370,6 @@ def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weig
"iterations": iterations if iterations else 500,
"batch_size": batch_size if batch_size else 64,
"learning_rate": learning_rate if learning_rate else 1e-5,
"gen_lr_steps": learning_rate_schedule if learning_rate_schedule else EPOCH_SCHEDULE,
"gradient_accumulation_size": gradient_accumulation_size if gradient_accumulation_size else 4,
"print_rate": print_rate if print_rate else 1,
"save_rate": save_rate if save_rate else 50,
@ -1379,6 +1393,22 @@ def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weig
'workers': workers if workers else 2,
}
LEARNING_RATE_SCHEMES = ["MultiStepLR", "CosineAnnealingLR_Restart"]
if learning_rate_scheme not in LEARNING_RATE_SCHEMES:
learning_rate_scheme = LEARNING_RATE_SCHEMES[0]
learning_rate_schema = [f"default_lr_scheme: {learning_rate_scheme}"]
if learning_rate_scheme == "MultiStepLR":
learning_rate_schema.append(f" gen_lr_steps: {learning_rate_schedule if learning_rate_schedule else EPOCH_SCHEDULE}")
learning_rate_schema.append(f" lr_gamma: 0.5")
elif learning_rate_scheme == "CosineAnnealingLR_Restart":
learning_rate_schema.append(f" T_period: [120000, 120000, 120000]")
learning_rate_schema.append(f" warmup: 10000")
learning_rate_schema.append(f" eta_min: .01")
learning_rate_schema.append(f" restarts: [140000, 280000]")
learning_rate_schema.append(f" restart_weights: [.5, .25]")
settings['learning_rate_scheme'] = "\n".join(learning_rate_schema)
if resume_path:
settings['pretrain_model_gpt'] = f"# {settings['pretrain_model_gpt']}"
else: