1
0

big cleanup to make my life easier when i add more parameters

This commit is contained in:
mrq 2023-03-09 00:26:47 +00:00
parent 0ab091e7ff
commit 3f321fe664
5 changed files with 482 additions and 702 deletions

View File

@ -1,16 +1,18 @@
name: ${name}
name: ${voice}
model: extensibletrainer
scale: 1
gpu_ids: [0] # Superfluous, redundant, unnecessary, the way you launch the training script will set this
start_step: 0
checkpointing_enabled: true
fp16: ${float16}
fp16: ${half_p}
bitsandbytes: ${bitsandbytes}
gpus: ${gpus}
wandb: false
use_tb_logger: true
datasets:
train:
name: ${dataset_name}
name: training
n_workers: ${workers}
batch_size: ${batch_size}
mode: paired_voice_audio
@ -27,7 +29,7 @@ datasets:
tokenizer_vocab: ./models/tortoise/bpe_lowercase_asr_256.json
load_aligned_codes: False
val: # I really do not care about validation right now
name: ${validation_name}
name: validation
n_workers: ${workers}
batch_size: ${validation_batch_size}
mode: paired_voice_audio
@ -114,8 +116,8 @@ networks:
#only_alignment_head: False # uv3/4
path:
${pretrain_model_gpt}
strict_load: true
${source_model}
${resume_state}
train:

View File

@ -1,35 +0,0 @@
import os
import sys
indir = f'./training/{sys.argv[1]}/'
cap = int(sys.argv[2])
if not os.path.isdir(indir):
raise Exception(f"Invalid directory: {indir}")
if not os.path.exists(f'{indir}/train.txt'):
raise Exception(f"Missing dataset: {indir}/train.txt")
with open(f'{indir}/train.txt', 'r', encoding="utf-8") as f:
lines = f.readlines()
validation = []
training = []
for line in lines:
split = line.split("|")
filename = split[0]
text = split[1]
if len(text) < cap:
validation.append(line.strip())
else:
training.append(line.strip())
with open(f'{indir}/train_culled.txt', 'w', encoding="utf-8") as f:
f.write("\n".join(training))
with open(f'{indir}/validation.txt', 'w', encoding="utf-8") as f:
f.write("\n".join(validation))
print(f"Culled {len(validation)} lines")

View File

@ -46,6 +46,7 @@ sys.path.insert(0, './dlas/')
# without kludge, it'll have to be accessible as `codes` and not `dlas`
import torch
import datetime
from codes import train as tr
from utils import util, options as option
@ -71,7 +72,7 @@ def train(yaml, launcher='none'):
print('Disabled distributed training.')
else:
opt['dist'] = True
tr.init_dist('nccl')
tr.init_dist('nccl', timeout=datetime.timedelta(seconds=5*60))
trainer.world_size = torch.distributed.get_world_size()
trainer.rank = torch.distributed.get_rank()
torch.cuda.set_device(torch.distributed.get_rank())

View File

@ -34,7 +34,7 @@ from datetime import timedelta
from tortoise.api import TextToSpeech, MODELS, get_model_path, pad_or_truncate
from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.device import get_device_name, set_device_name
from tortoise.utils.device import get_device_name, set_device_name, get_device_count
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
@ -44,6 +44,8 @@ WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band']
GENERATE_SETTINGS_ARGS = None
EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
args = None
@ -56,30 +58,17 @@ training_state = None
current_voice = None
def generate(
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
progress=None
):
def generate(**kwargs):
parameters = {}
parameters.update(kwargs)
voice = parameters['voice']
progress = parameters['progress'] if 'progress' in parameters else None
if parameters['seed'] == 0:
parameters['seed'] = None
usedSeed = parameters['seed']
global args
global tts
@ -90,6 +79,8 @@ def generate(
# should check if it's loading or unloaded, and load it if it's unloaded
if tts_loading:
raise Exception("TTS is still initializing...")
if progress is not None:
progress(0, "Initializing TTS...")
load_tts()
if hasattr(tts, "loading") and tts.loading:
raise Exception("TTS is still initializing...")
@ -100,9 +91,6 @@ def generate(
conditioning_latents =None
sample_voice = None
if seed == 0:
seed = None
voice_cache = {}
def fetch_voice( voice ):
print(f"Loading voice: {voice} with model {tts.autoregressive_model_hash[:8]}")
@ -112,9 +100,9 @@ def generate(
sample_voice = None
if voice == "microphone":
if mic_audio is None:
if parameters['mic_audio'] is None:
raise Exception("Please provide audio from mic when choosing `microphone` as a voice input")
voice_samples, conditioning_latents = [load_audio(mic_audio, tts.input_sample_rate)], None
voice_samples, conditioning_latents = [load_audio(parameters['mic_audio'], tts.input_sample_rate)], None
elif voice == "random":
voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents()
else:
@ -125,7 +113,7 @@ def generate(
if voice_samples and len(voice_samples) > 0:
if conditioning_latents is None:
conditioning_latents = compute_latents(voice=voice, voice_samples=voice_samples, voice_latents_chunks=voice_latents_chunks)
conditioning_latents = compute_latents(voice=voice, voice_samples=voice_samples, voice_latents_chunks=parameters['voice_latents_chunks'])
sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu()
voice_samples = None
@ -135,30 +123,30 @@ def generate(
def get_settings( override=None ):
settings = {
'temperature': float(temperature),
'temperature': float(parameters['temperature']),
'top_p': float(top_p),
'diffusion_temperature': float(diffusion_temperature),
'length_penalty': float(length_penalty),
'repetition_penalty': float(repetition_penalty),
'cond_free_k': float(cond_free_k),
'top_p': float(parameters['top_p']),
'diffusion_temperature': float(parameters['diffusion_temperature']),
'length_penalty': float(parameters['length_penalty']),
'repetition_penalty': float(parameters['repetition_penalty']),
'cond_free_k': float(parameters['cond_free_k']),
'num_autoregressive_samples': num_autoregressive_samples,
'num_autoregressive_samples': parameters['num_autoregressive_samples'],
'sample_batch_size': args.sample_batch_size,
'diffusion_iterations': diffusion_iterations,
'diffusion_iterations': parameters['diffusion_iterations'],
'voice_samples': None,
'conditioning_latents': None,
'use_deterministic_seed': seed,
'use_deterministic_seed': parameters['seed'],
'return_deterministic_state': True,
'k': candidates,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'progress': progress,
'half_p': "Half Precision" in experimental_checkboxes,
'cond_free': "Conditioning-Free" in experimental_checkboxes,
'cvvp_amount': cvvp_weight,
'k': parameters['candidates'],
'diffusion_sampler': parameters['diffusion_sampler'],
'breathing_room': parameters['breathing_room'],
'progress': parameters['progress'],
'half_p': "Half Precision" in parameters['experimentals'],
'cond_free': "Conditioning-Free" in parameters['experimentals'],
'cvvp_amount': parameters['cvvp_weight'],
'autoregressive_model': args.autoregressive_model,
}
@ -182,11 +170,11 @@ def generate(
# clamp it down for the insane users who want this
# it would be wiser to enforce the sample size to the batch size, but this is what the user wants
sample_batch_size = args.sample_batch_size
if not sample_batch_size:
sample_batch_size = tts.autoregressive_batch_size
if num_autoregressive_samples < sample_batch_size:
settings['sample_batch_size'] = num_autoregressive_samples
settings['sample_batch_size'] = args.sample_batch_size
if not settings['sample_batch_size']:
settings['sample_batch_size'] = tts.autoregressive_batch_size
if settings['num_autoregressive_samples'] < settings['sample_batch_size']:
settings['sample_batch_size'] = settings['num_autoregressive_samples']
if settings['conditioning_latents'] is not None and len(settings['conditioning_latents']) == 2 and settings['cvvp_amount'] > 0:
print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents with 'Slimmer voice latents' unchecked.")
@ -194,15 +182,15 @@ def generate(
return settings
if not delimiter:
delimiter = "\n"
elif delimiter == "\\n":
delimiter = "\n"
if not parameters['delimiter']:
parameters['delimiter'] = "\n"
elif parameters['delimiter'] == "\\n":
parameters['delimiter'] = "\n"
if delimiter and delimiter != "" and delimiter in text:
texts = text.split(delimiter)
if parameters['delimiter'] and parameters['delimiter'] != "" and parameters['delimiter'] in parameters['text']:
texts = parameters['text'].split(parameters['delimiter'])
else:
texts = split_and_recombine_text(text)
texts = split_and_recombine_text(parameters['text'])
full_start_time = time.time()
@ -248,37 +236,23 @@ def generate(
name = f"{name}_combined"
elif len(texts) > 1:
name = f"{name}_{line}"
if candidates > 1:
if parameters['candidates'] > 1:
name = f"{name}_{candidate}"
return name
def get_info( voice, settings = None, latents = True ):
info = {
'text': text,
'delimiter': '\\n' if delimiter and delimiter == "\n" else delimiter,
'emotion': emotion,
'prompt': prompt,
'voice': voice,
'seed': seed,
'candidates': candidates,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'temperature': temperature,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'cvvp_weight': cvvp_weight,
'top_p': top_p,
'diffusion_temperature': diffusion_temperature,
'length_penalty': length_penalty,
'repetition_penalty': repetition_penalty,
'cond_free_k': cond_free_k,
'experimentals': experimental_checkboxes,
'time': time.time()-full_start_time,
info = {}
info.update(parameters)
info['time'] = time.time()-full_start_time,
'datetime': datetime.now().isoformat(),
'model': tts.autoregressive_model_path,
'model_hash': tts.autoregressive_model_hash
}
info['datetime'] = datetime.now().isoformat(),
info['model'] = tts.autoregressive_model_path,
info['model_hash'] = tts.autoregressive_model_hash
info['progress'] = None
del info['progress']
if info['delimiter'] == "\n":
info['delimiter'] = "\\n"
if settings is not None:
for k in settings:
@ -319,11 +293,11 @@ def generate(
return info
for line, cut_text in enumerate(texts):
if emotion == "Custom":
if prompt and prompt.strip() != "":
cut_text = f"[{prompt},] {cut_text}"
elif emotion != "None" and emotion:
cut_text = f"[I am really {emotion.lower()},] {cut_text}"
if parameters['emotion'] == "Custom":
if parameters['prompt'] and parameters['prompt'].strip() != "":
cut_text = f"[{parameters['prompt']},] {cut_text}"
elif parameters['emotion'] != "None" and parameters['emotion']:
cut_text = f"[I am really {parameters['emotion'].lower()},] {cut_text}"
progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]'
print(f"{progress.msg_prefix} Generating line: {cut_text}")
@ -343,10 +317,10 @@ def generate(
settings = get_settings( override=override )
gen, additionals = tts.tts(cut_text, **settings )
seed = additionals[0]
parameters['seed'] = additionals[0]
run_time = time.time()-start_time
print(f"Generating line took {run_time} seconds")
if not isinstance(gen, list):
gen = [gen]
@ -382,7 +356,7 @@ def generate(
torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate)
output_voices = []
for candidate in range(candidates):
for candidate in range(parameters['candidates']):
if len(texts) > 1:
audio_clips = []
for line in range(len(texts)):
@ -466,7 +440,7 @@ def generate(
info = get_info(voice=voice, latents=False)
print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n")
info['seed'] = seed
info['seed'] = usedSeed
if 'latents' in info:
del info['latents']
@ -475,7 +449,7 @@ def generate(
f.write(json.dumps(info, indent='\t') )
stats = [
[ seed, "{:.3f}".format(info['time']) ]
[ parameters['seed'], "{:.3f}".format(info['time']) ]
]
return (
@ -609,14 +583,16 @@ def compute_latents(voice=None, voice_samples=None, voice_latents_chunks=0, prog
# superfluous, but it cleans up some things
class TrainingState():
def __init__(self, config_path, keep_x_past_checkpoints=0, start=True, gpus=1):
def __init__(self, config_path, keep_x_past_checkpoints=0, start=True):
# parse config to get its iteration
with open(config_path, 'r') as file:
self.config = yaml.safe_load(file)
gpus = self.config["gpus"]
self.killed = False
self.dataset_dir = f"./training/{self.config['name']}/"
self.dataset_dir = f"./training/{self.config['name']}/finetune/"
self.batch_size = self.config['datasets']['train']['batch_size']
self.dataset_path = self.config['datasets']['train']['path']
with open(self.dataset_path, 'r', encoding="utf-8") as f:
@ -996,7 +972,7 @@ except Exception as e:
print(e)
pass
def run_training(config_path, verbose=False, gpus=1, keep_x_past_checkpoints=0, progress=gr.Progress(track_tqdm=True)):
def run_training(config_path, verbose=False, keep_x_past_checkpoints=0, progress=gr.Progress(track_tqdm=True)):
global training_state
if training_state and training_state.process:
return "Training already in progress"
@ -1008,26 +984,11 @@ def run_training(config_path, verbose=False, gpus=1, keep_x_past_checkpoints=0,
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
torch.multiprocessing.freeze_support()
# edit any gpu-count-specific variables
with open(config_path, 'r', encoding="utf-8") as f:
yaml_string = f.read()
edited = False
if gpus > 1:
yaml_string = yaml_string.replace(" adamw ", " adamw_zero ")
edited = True
else:
yaml_string = yaml_string.replace(" adamw_zero ", " adamw ")
edited = True
if edited:
print(f'Modified YAML config')
with open(config_path, 'w', encoding="utf-8") as f:
f.write(yaml_string)
unload_tts()
unload_whisper()
unload_voicefixer()
training_state = TrainingState(config_path=config_path, keep_x_past_checkpoints=keep_x_past_checkpoints, gpus=gpus)
training_state = TrainingState(config_path=config_path, keep_x_past_checkpoints=keep_x_past_checkpoints)
for line in iter(training_state.process.stdout.readline, ""):
if training_state.killed:
@ -1169,7 +1130,7 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, progres
if whisper_model is None:
load_whisper_model(language=language)
os.makedirs(outdir, exist_ok=True)
os.makedirs(f'{outdir}/audio/', exist_ok=True)
results = {}
transcription = []
@ -1216,10 +1177,10 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, progres
print(f"Error with {sliced_name}, skipping...")
continue
torchaudio.save(f"{outdir}/{sliced_name}", sliced_waveform, sampling_rate)
torchaudio.save(f"{outdir}/audio/{sliced_name}", sliced_waveform, sampling_rate)
idx = idx + 1
line = f"{sliced_name}|{segment['text'].strip()}"
line = f"audio/{sliced_name}|{segment['text'].strip()}"
transcription.append(line)
with open(f'{outdir}/train.txt', 'a', encoding="utf-8") as f:
f.write(f'\n{line}')
@ -1283,125 +1244,142 @@ def calc_iterations( epochs, lines, batch_size ):
def schedule_learning_rate( iterations, schedule=EPOCH_SCHEDULE ):
return [int(iterations * d) for d in schedule]
def optimize_training_settings( epochs, learning_rate, text_ce_lr_weight, learning_rate_schedule, batch_size, gradient_accumulation_size, print_rate, save_rate, validation_rate, resume_path, half_p, bnb, workers, source_model, voice ):
name = f"{voice}-finetune"
dataset_path = f"./training/{voice}/train.txt"
def optimize_training_settings( **kwargs ):
messages = []
settings = {}
settings.update(kwargs)
dataset_path = f"./training/{settings['voice']}/train.txt"
with open(dataset_path, 'r', encoding="utf-8") as f:
lines = len(f.readlines())
messages = []
if settings['batch_size'] > lines:
settings['batch_size'] = lines
messages.append(f"Batch size is larger than your dataset, clamping batch size to: {settings['batch_size']}")
if batch_size > lines:
batch_size = lines
messages.append(f"Batch size is larger than your dataset, clamping batch size to: {batch_size}")
if batch_size % lines != 0:
nearest_slice = int(lines / batch_size) + 1
batch_size = int(lines / nearest_slice)
messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {batch_size} ({nearest_slice} steps per epoch)")
if settings['batch_size'] % lines != 0:
nearest_slice = int(lines / settings['batch_size']) + 1
settings['batch_size'] = int(lines / nearest_slice)
messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {settings['batch_size']} ({nearest_slice} steps per epoch)")
if gradient_accumulation_size == 0:
gradient_accumulation_size = 1
if settings['gradient_accumulation_size'] == 0:
settings['gradient_accumulation_size'] = 1
if batch_size / gradient_accumulation_size < 2:
gradient_accumulation_size = int(batch_size / 2)
if gradient_accumulation_size == 0:
gradient_accumulation_size = 1
if settings['batch_size'] / settings['gradient_accumulation_size'] < 2:
settings['gradient_accumulation_size'] = int(settings['batch_size'] / 2)
if settings['gradient_accumulation_size'] == 0:
settings['gradient_accumulation_size'] = 1
messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {gradient_accumulation_size}")
elif batch_size % gradient_accumulation_size != 0:
gradient_accumulation_size = int(batch_size / gradient_accumulation_size)
if gradient_accumulation_size == 0:
gradient_accumulation_size = 1
messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {settings['gradient_accumulation_size']}")
elif settings['batch_size'] % settings['gradient_accumulation_size'] != 0:
settings['gradient_accumulation_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size'])
if settings['gradient_accumulation_size'] == 0:
settings['gradient_accumulation_size'] = 1
messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {gradient_accumulation_size}")
messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}")
iterations = calc_iterations(epochs=epochs, lines=lines, batch_size=batch_size)
iterations = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
if epochs < print_rate:
print_rate = epochs
messages.append(f"Print rate is too small for the given iteration step, clamping print rate to: {print_rate}")
if settings['epochs'] < settings['print_rate']:
settings['print_rate'] = settings['epochs']
messages.append(f"Print rate is too small for the given iteration step, clamping print rate to: {settings['print_rate']}")
if epochs < save_rate:
save_rate = epochs
messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {save_rate}")
if settings['epochs'] < settings['save_rate']:
settings['save_rate'] = settings['epochs']
messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {settings['save_rate']}")
if epochs < validation_rate:
validation_rate = epochs
messages.append(f"Validation rate is too small for the given iteration step, clamping validation rate to: {validation_rate}")
if settings['epochs'] < settings['validation_rate']:
settings['validation_rate'] = settings['epochs']
messages.append(f"Validation rate is too small for the given iteration step, clamping validation rate to: {settings['validation_rate']}")
if resume_path and not os.path.exists(resume_path):
resume_path = None
if settings['resume_state'] and not os.path.exists(settings['resume_state']):
settings['resume_state'] = None
messages.append("Resume path specified, but does not exist. Disabling...")
if bnb:
if settings['bitsandbytes']:
messages.append("BitsAndBytes requested. Please note this is ! EXPERIMENTAL !")
if half_p:
if bnb:
half_p = False
if settings['half_p']:
if settings['bitsandbytes']:
settings['half_p'] = False
messages.append("Half Precision requested, but BitsAndBytes is also requested. Due to redundancies, disabling half precision...")
else:
messages.append("Half Precision requested. Please note this is ! EXPERIMENTAL !")
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
messages.append(f"For {epochs} epochs with {lines} lines in batches of {batch_size}, iterating for {iterations} steps ({int(iterations / epochs)} steps per epoch)")
messages.append(f"For {settings['epochs']} epochs with {lines} lines in batches of {settings['batch_size']}, iterating for {iterations} steps ({int(iterations / settings['epochs'])} steps per epoch)")
return (
learning_rate,
text_ce_lr_weight,
learning_rate_schedule,
batch_size,
gradient_accumulation_size,
print_rate,
save_rate,
validation_rate,
resume_path,
messages
)
return settings, messages
def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weight=None, learning_rate_scheme=None, learning_rate_schedule=None, batch_size=None, gradient_accumulation_size=None, print_rate=None, save_rate=None, validation_rate=None, name=None, dataset_name=None, dataset_path=None, validation_name=None, validation_path=None, validation_batch_size=None, output_name=None, resume_path=None, half_p=None, bnb=None, workers=None, source_model=None ):
if not source_model:
source_model = f"./models/tortoise/autoregressive{'_half' if half_p else ''}.pth"
def save_training_settings( **kwargs ):
messages = []
settings = {}
settings.update(kwargs)
settings = {
"iterations": iterations if iterations else 500,
"batch_size": batch_size if batch_size else 64,
"learning_rate": learning_rate if learning_rate else 1e-5,
"gradient_accumulation_size": gradient_accumulation_size if gradient_accumulation_size else 4,
"print_rate": print_rate if print_rate else 1,
"save_rate": save_rate if save_rate else 50,
"name": name if name else "finetune",
"dataset_name": dataset_name if dataset_name else "finetune",
"dataset_path": dataset_path if dataset_path else "./training/finetune/train.txt",
"validation_name": validation_name if validation_name else "finetune",
"validation_path": validation_path if validation_path else "./training/finetune/train.txt",
'validation_rate': validation_rate if validation_rate else iterations,
"validation_batch_size": validation_batch_size if validation_batch_size else batch_size,
'validation_enabled': "true",
settings['dataset_path'] = f"./training/{settings['voice']}/train.txt"
settings['validation_path'] = f"./training/{settings['voice']}/validation.txt"
"text_ce_lr_weight": text_ce_lr_weight if text_ce_lr_weight else 0.01,
with open(settings['dataset_path'], 'r', encoding="utf-8") as f:
lines = len(f.readlines())
'resume_state': f"resume_state: '{resume_path}'",
'pretrain_model_gpt': f"pretrain_model_gpt: '{source_model}'",
if not settings['source_model'] or settings['source_model'] == "auto":
settings['source_model'] = f"./models/tortoise/autoregressive{'_half' if settings['half_p'] else ''}.pth"
'float16': 'true' if half_p else 'false',
'bitsandbytes': 'true' if bnb else 'false',
if settings['half_p']:
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
'workers': workers if workers else 2,
}
settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
messages.append(f"For {settings['epochs']} epochs with {lines} lines, iterating for {settings['iterations']} steps")
settings['print_rate'] = int(settings['print_rate'] * settings['iterations'] / settings['epochs'])
settings['save_rate'] = int(settings['save_rate'] * settings['iterations'] / settings['epochs'])
settings['validation_rate'] = int(settings['validation_rate'] * settings['iterations'] / settings['epochs'])
settings['validation_batch_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size'])
settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
if settings['iterations'] % settings['save_rate'] != 0:
adjustment = int(settings['iterations'] / settings['save_rate']) * settings['save_rate']
messages.append(f"Iteration rate is not evenly divisible by save rate, adjusting: {settings['iterations']} => {adjustment}")
settings['iterations'] = adjustment
if not os.path.exists(settings['validation_path']):
settings['validation_enabled'] = False
messages.append("Validation not found, disabling validation...")
elif settings['validation_batch_size'] == 0:
settings['validation_enabled'] = False
messages.append("Validation batch size == 0, disabling validation...")
else:
settings['validation_enabled'] = True
with open(settings['validation_path'], 'r', encoding="utf-8") as f:
validation_lines = len(f.readlines())
if validation_lines < settings['validation_batch_size']:
settings['validation_batch_size'] = validation_lines
messages.append(f"Batch size exceeds validation dataset size, clamping validation batch size to {validation_lines}")
if settings['gpus'] > get_device_count():
settings['gpus'] = get_device_count()
LEARNING_RATE_SCHEMES = ["MultiStepLR", "CosineAnnealingLR_Restart"]
if learning_rate_scheme not in LEARNING_RATE_SCHEMES:
learning_rate_scheme = LEARNING_RATE_SCHEMES[0]
if 'learning_rate_scheme' not in settings or settings['learning_rate_scheme'] not in LEARNING_RATE_SCHEMES:
settings['learning_rate_scheme'] = LEARNING_RATE_SCHEMES[0]
learning_rate_schema = [f"default_lr_scheme: {learning_rate_scheme}"]
if learning_rate_scheme == "MultiStepLR":
learning_rate_schema.append(f" gen_lr_steps: {learning_rate_schedule if learning_rate_schedule else EPOCH_SCHEDULE}")
learning_rate_schema = [f"default_lr_scheme: {settings['learning_rate_scheme']}"]
if settings['learning_rate_scheme'] == "MultiStepLR":
if not settings['learning_rate_schedule']:
settings['learning_rate_schedule'] = EPOCH_SCHEDULE
elif isinstance(settings['learning_rate_schedule'],str):
settings['learning_rate_schedule'] = json.loads(settings['learning_rate_schedule'])
settings['learning_rate_schedule'] = schedule_learning_rate( settings['iterations'] / settings['epochs'], settings['learning_rate_schedule'] )
learning_rate_schema.append(f" gen_lr_steps: {settings['learning_rate_schedule']}")
learning_rate_schema.append(f" lr_gamma: 0.5")
elif learning_rate_scheme == "CosineAnnealingLR_Restart":
elif settings['learning_rate_scheme'] == "CosineAnnealingLR_Restart":
learning_rate_schema.append(f" T_period: [120000, 120000, 120000]")
learning_rate_schema.append(f" warmup: 10000")
learning_rate_schema.append(f" eta_min: .01")
@ -1409,23 +1387,26 @@ def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weig
learning_rate_schema.append(f" restart_weights: [.5, .25]")
settings['learning_rate_scheme'] = "\n".join(learning_rate_schema)
if resume_path:
"""
if resume_state:
settings['pretrain_model_gpt'] = f"# {settings['pretrain_model_gpt']}"
else:
settings['resume_state'] = f"# resume_state: './training/{name if name else 'finetune'}/training_state/#.state'"
settings['resume_state'] = f"# resume_state: './training/{voice}/training_state/#.state'"
# also disable validation if it doesn't make sense to do it
if settings['dataset_path'] == settings['validation_path'] or not os.path.exists(settings['validation_path']):
settings['validation_enabled'] = 'false'
"""
outjson = f'./training/{settings["voice"]}/train.json'
with open(outjson, 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
if half_p:
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
if not output_name:
output_name = f'{settings["name"]}.yaml'
if settings['resume_state']:
settings['source_model'] = f"# pretrain_model_gpt: {settings['source_model']}"
settings['resume_state'] = f"resume_state: {settings['resume_state']}'"
else:
settings['source_model'] = f"pretrain_model_gpt: {settings['source_model']}"
settings['resume_state'] = f"# resume_state: {settings['resume_state']}'"
with open(f'./models/.template.yaml', 'r', encoding="utf-8") as f:
yaml = f.read()
@ -1436,11 +1417,13 @@ def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weig
continue
yaml = yaml.replace(f"${{{k}}}", str(settings[k]))
outfile = f'./training/{output_name}'
with open(outfile, 'w', encoding="utf-8") as f:
outyaml = f'./training/{settings["voice"]}/train.yaml'
with open(outyaml, 'w', encoding="utf-8") as f:
f.write(yaml)
return f"Training settings saved to: {outfile}"
messages.append(f"Saved training output to: {outyaml}")
return settings, messages
def import_voices(files, saveAs=None, progress=None):
global args
@ -1524,10 +1507,10 @@ def get_autoregressive_models(dir="./models/finetunes/", prefixed=False):
additionals = sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ])
found = []
for training in os.listdir(f'./training/'):
if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/models/'):
if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/finetunes/') or not os.path.isdir(f'./training/{training}/finetunes/models/'):
continue
models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/models/') if d[-8:] == "_gpt.pth" ])
found = found + [ f'./training/{training}/models/{d}_gpt.pth' for d in models ]
models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/finetunes/models/') if d[-8:] == "_gpt.pth" ])
found = found + [ f'./training/{training}/finetunes/models/{d}_gpt.pth' for d in models ]
if len(found) > 0 or len(additionals) > 0:
base = ["auto"] + base
@ -1545,10 +1528,10 @@ def get_autoregressive_models(dir="./models/finetunes/", prefixed=False):
return res
def get_dataset_list(dir="./training/"):
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.txt" in os.listdir(os.path.join(dir, d)) ])
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.txt" in os.listdir(os.path.join(dir, d)) ])
def get_training_list(dir="./training/"):
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
def do_gc():
gc.collect()
@ -1734,35 +1717,38 @@ def setup_args():
return args
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, vocoder_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ):
def update_args( **kwargs ):
global args
args.listen = listen
args.share = share
args.check_for_updates = check_for_updates
args.models_from_local_only = models_from_local_only
args.low_vram = low_vram
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
args.defer_tts_load = defer_tts_load
args.prune_nonfinal_outputs = prune_nonfinal_outputs
args.device_override = device_override
args.sample_batch_size = sample_batch_size
args.embed_output_metadata = embed_output_metadata
args.latents_lean_and_mean = latents_lean_and_mean
args.voice_fixer = voice_fixer
args.voice_fixer_use_cuda = voice_fixer_use_cuda
args.concurrency_count = concurrency_count
args.output_sample_rate = 44000
args.autocalculate_voice_chunk_duration_size = autocalculate_voice_chunk_duration_size
args.output_volume = output_volume
args.autoregressive_model = autoregressive_model
args.vocoder_model = vocoder_model
args.whisper_backend = whisper_backend
args.whisper_model = whisper_model
settings = {}
settings.update(kwargs)
args.training_default_halfp = training_default_halfp
args.training_default_bnb = training_default_bnb
args.listen = settings['listen']
args.share = settings['share']
args.check_for_updates = settings['check_for_updates']
args.models_from_local_only = settings['models_from_local_only']
args.low_vram = settings['low_vram']
args.force_cpu_for_conditioning_latents = settings['force_cpu_for_conditioning_latents']
args.defer_tts_load = settings['defer_tts_load']
args.prune_nonfinal_outputs = settings['prune_nonfinal_outputs']
args.device_override = settings['device_override']
args.sample_batch_size = settings['sample_batch_size']
args.embed_output_metadata = settings['embed_output_metadata']
args.latents_lean_and_mean = settings['latents_lean_and_mean']
args.voice_fixer = settings['voice_fixer']
args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda']
args.concurrency_count = settings['concurrency_count']
args.output_sample_rate = 44000
args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size']
args.output_volume = settings['output_volume']
args.autoregressive_model = settings['autoregressive_model']
args.vocoder_model = settings['vocoder_model']
args.whisper_backend = settings['whisper_backend']
args.whisper_model = settings['whisper_model']
args.training_default_halfp = settings['training_default_halfp']
args.training_default_bnb = settings['training_default_bnb']
save_args_settings()
@ -1801,37 +1787,49 @@ def save_args_settings():
with open(f'./config/exec.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
# super kludgy )`;
def set_generate_settings_arg_order(args):
global GENERATE_SETTINGS_ARGS
GENERATE_SETTINGS_ARGS = args
def import_generate_settings(file="./config/generate.json"):
global GENERATE_SETTINGS_ARGS
defaults = {
'text': None,
'delimiter': None,
'emotion': None,
'prompt': None,
'voice': None,
'mic_audio': None,
'voice_latents_chunks': None,
'candidates': None,
'seed': None,
'num_autoregressive_samples': 16,
'diffusion_iterations': 30,
'temperature': 0.8,
'diffusion_sampler': "DDIM",
'breathing_room': 8 ,
'cvvp_weight': 0.0,
'top_p': 0.8,
'diffusion_temperature': 1.0,
'length_penalty': 1.0,
'repetition_penalty': 2.0,
'cond_free_k': 2.0,
'experimentals': None,
}
settings, _ = read_generate_settings(file, read_latents=False)
if settings is None:
return None
res = []
if GENERATE_SETTINGS_ARGS is not None:
for k in GENERATE_SETTINGS_ARGS:
res.append(defaults[k] if not settings or settings[k] is None else settings[k])
else:
for k in defaults:
res.append(defaults[k] if not settings or settings[k] is None else settings[k])
return (
None if 'text' not in settings else settings['text'],
None if 'delimiter' not in settings else settings['delimiter'],
None if 'emotion' not in settings else settings['emotion'],
None if 'prompt' not in settings else settings['prompt'],
None if 'voice' not in settings else settings['voice'],
None,
None,
None if 'seed' not in settings else settings['seed'],
None if 'candidates' not in settings else settings['candidates'],
None if 'num_autoregressive_samples' not in settings else settings['num_autoregressive_samples'],
None if 'diffusion_iterations' not in settings else settings['diffusion_iterations'],
0.8 if 'temperature' not in settings else settings['temperature'],
"DDIM" if 'diffusion_sampler' not in settings else settings['diffusion_sampler'],
8 if 'breathing_room' not in settings else settings['breathing_room'],
0.0 if 'cvvp_weight' not in settings else settings['cvvp_weight'],
0.8 if 'top_p' not in settings else settings['top_p'],
1.0 if 'diffusion_temperature' not in settings else settings['diffusion_temperature'],
1.0 if 'length_penalty' not in settings else settings['length_penalty'],
2.0 if 'repetition_penalty' not in settings else settings['repetition_penalty'],
2.0 if 'cond_free_k' not in settings else settings['cond_free_k'],
None if 'experimentals' not in settings else settings['experimentals'],
)
return tuple(res)
def reset_generation_settings():
@ -1955,10 +1953,10 @@ def deduce_autoregressive_model(voice=None):
voice = get_current_voice()
if voice:
dir = f'./training/{voice}-finetune/models/'
if os.path.exists(f'./training/finetunes/{voice}.pth'):
return f'./training/finetunes/{voice}.pth'
if os.path.exists(f'./models/finetunes/{voice}.pth'):
return f'./models/finetunes/{voice}.pth'
dir = f'./training/{voice}/finetune/models/'
if os.path.isdir(dir):
counts = sorted([ int(d[:-8]) for d in os.listdir(dir) if d[-8:] == "_gpt.pth" ])
names = [ f'{dir}/{d}_gpt.pth' for d in counts ]

View File

@ -4,6 +4,7 @@ import time
import json
import base64
import re
import inspect
import urllib.request
import torch
@ -22,7 +23,38 @@ from utils import *
args = setup_args()
def run_generation(
GENERATE_SETTINGS = {}
TRANSCRIBE_SETTINGS = {}
EXEC_SETTINGS = {}
TRAINING_SETTINGS = {}
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
HISTORY_HEADERS = {
"Name": "",
"Samples": "num_autoregressive_samples",
"Iterations": "diffusion_iterations",
"Temp.": "temperature",
"Sampler": "diffusion_sampler",
"CVVP": "cvvp_weight",
"Top P": "top_p",
"Diff. Temp.": "diffusion_temperature",
"Len Pen": "length_penalty",
"Rep Pen": "repetition_penalty",
"Cond-Free K": "cond_free_k",
"Time": "time",
"Datetime": "datetime",
"Model": "model",
"Model Hash": "model_hash",
}
# can't use *args OR **kwargs if I want to retain the ability to use progress
def generate_proxy(
text,
delimiter,
emotion,
@ -30,8 +62,8 @@ def run_generation(
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
seed,
num_autoregressive_samples,
diffusion_iterations,
temperature,
@ -43,47 +75,20 @@ def run_generation(
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
experimentals,
progress=gr.Progress(track_tqdm=True)
):
if not text:
raise gr.Error("Please provide text.")
if not voice:
raise gr.Error("Please provide a voice.")
kwargs = locals()
try:
sample, outputs, stats = generate(
text=text,
delimiter=delimiter,
emotion=emotion,
prompt=prompt,
voice=voice,
mic_audio=mic_audio,
voice_latents_chunks=voice_latents_chunks,
seed=seed,
candidates=candidates,
num_autoregressive_samples=num_autoregressive_samples,
diffusion_iterations=diffusion_iterations,
temperature=temperature,
diffusion_sampler=diffusion_sampler,
breathing_room=breathing_room,
cvvp_weight=cvvp_weight,
top_p=top_p,
diffusion_temperature=diffusion_temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
cond_free_k=cond_free_k,
experimental_checkboxes=experimental_checkboxes,
progress=progress
)
sample, outputs, stats = generate(**kwargs)
except Exception as e:
message = str(e)
if message == "Kill signal detected":
unload_tts()
raise gr.Error(message)
raise e
return (
outputs[0],
gr.update(value=sample, visible=sample is not None),
@ -91,14 +96,8 @@ def run_generation(
gr.update(value=stats, visible=True),
)
def update_presets(value):
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
@ -117,24 +116,6 @@ def get_training_configs():
def update_training_configs():
return gr.update(choices=get_training_list())
history_headers = {
"Name": "",
"Samples": "num_autoregressive_samples",
"Iterations": "diffusion_iterations",
"Temp.": "temperature",
"Sampler": "diffusion_sampler",
"CVVP": "cvvp_weight",
"Top P": "top_p",
"Diff. Temp.": "diffusion_temperature",
"Len Pen": "length_penalty",
"Rep Pen": "repetition_penalty",
"Cond-Free K": "cond_free_k",
"Time": "time",
"Datetime": "datetime",
"Model": "model",
"Model Hash": "model_hash",
}
def history_view_results( voice ):
results = []
files = []
@ -148,10 +129,10 @@ def history_view_results( voice ):
continue
values = []
for k in history_headers:
for k in HISTORY_HEADERS:
v = file
if k != "Name":
v = metadata[history_headers[k]] if history_headers[k] in metadata else '?'
v = metadata[HISTORY_HEADERS[k]] if HISTORY_HEADERS[k] in metadata else '?'
values.append(v)
@ -193,181 +174,55 @@ def read_generate_settings_proxy(file, saveAs='.temp'):
def prepare_dataset_proxy( voice, language, skip_existings, progress=gr.Progress(track_tqdm=True) ):
return prepare_dataset( get_voices(load_latents=False)[voice], outdir=f"./training/{voice}/", language=language, skip_existings=skip_existings, progress=progress )
def optimize_training_settings_proxy( *args, **kwargs ):
tup = optimize_training_settings(*args, **kwargs)
def update_args_proxy( *args ):
kwargs = {}
keys = list(EXEC_SETTINGS.keys())
for i in range(len(args)):
k = keys[i]
v = args[i]
kwargs[k] = v
return (
gr.update(value=tup[0]),
gr.update(value=tup[1]),
gr.update(value=tup[2]),
gr.update(value=tup[3]),
gr.update(value=tup[4]),
gr.update(value=tup[5]),
gr.update(value=tup[6]),
gr.update(value=tup[7]),
gr.update(value=tup[8]),
"\n".join(tup[9])
)
update_args(**kwargs)
def optimize_training_settings_proxy( *args ):
kwargs = {}
keys = list(TRAINING_SETTINGS.keys())
for i in range(len(args)):
k = keys[i]
v = args[i]
kwargs[k] = v
settings, messages = optimize_training_settings(**kwargs)
output = list(settings.values())
return output[:-1] + ["\n".join(messages)]
def import_training_settings_proxy( voice ):
indir = f'./training/{voice}/'
outdir = f'./training/{voice}-finetune/'
in_config_path = f"{indir}/train.yaml"
out_config_path = None
out_configs = []
if os.path.isdir(outdir):
out_configs = sorted([d[:-5] for d in os.listdir(outdir) if d[-5:] == ".yaml" ])
if len(out_configs) > 0:
out_config_path = f'{outdir}/{out_configs[-1]}.yaml'
config_path = out_config_path if out_config_path else in_config_path
messages = []
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
messages.append(f"Importing from: {config_path}")
dataset_path = f"./training/{voice}/train.txt"
with open(dataset_path, 'r', encoding="utf-8") as f:
lines = len(f.readlines())
messages.append(f"Basing epoch size to {lines} lines")
batch_size = config['datasets']['train']['batch_size']
gradient_accumulation_size = config['train']['mega_batch_factor']
iterations = config['train']['niter']
steps_per_iteration = int(lines / batch_size)
epochs = int(iterations / steps_per_iteration)
learning_rate = config['steps']['gpt_train']['optimizer_params']['lr']
text_ce_lr_weight = config['steps']['gpt_train']['losses']['text_ce']['weight']
learning_rate_schedule = [ int(x / steps_per_iteration) for x in config['train']['gen_lr_steps'] ]
print_rate = int(config['logger']['print_freq'] / steps_per_iteration)
save_rate = int(config['logger']['save_checkpoint_freq'] / steps_per_iteration)
validation_rate = int(config['train']['val_freq'] / steps_per_iteration)
half_p = config['fp16']
bnb = True
statedir = f'{outdir}/training_state/'
resumes = []
resume_path = None
source_model = get_halfp_model_path() if half_p else get_model_path('autoregressive.pth')
if "pretrain_model_gpt" in config['path']:
source_model = config['path']['pretrain_model_gpt']
elif "resume_state" in config['path']:
resume_path = config['path']['resume_state']
injson = f'./training/{voice}/train.json'
statedir = f'./training/{voice}/training_state/'
with open(injson, 'r', encoding="utf-8") as f:
settings = json.loads(f.read())
if os.path.isdir(statedir):
resumes = sorted([int(d[:-6]) for d in os.listdir(statedir) if d[-6:] == ".state" ])
if len(resumes) > 0:
resume_path = f'{statedir}/{resumes[-1]}.state'
messages.append(f"Latest resume found: {resume_path}")
if len(resumes) > 0:
settings['resume_state'] = f'{statedir}/{resumes[-1]}.state'
messages.append(f"Found most recent training state: {settings['resume_state']}")
output = list(settings.values())
messages.append(f"Imported training settings: {injson}")
return output[:-1] + ["\n".join(messages)]
def save_training_settings_proxy( *args ):
kwargs = {}
keys = list(TRAINING_SETTINGS.keys())
for i in range(len(args)):
k = keys[i]
v = args[i]
kwargs[k] = v
if "ext" in config and "bitsandbytes" in config["ext"]:
bnb = config["ext"]["bitsandbytes"]
workers = config['datasets']['train']['n_workers']
messages = "\n".join(messages)
return (
epochs,
learning_rate,
text_ce_lr_weight,
learning_rate_schedule,
batch_size,
gradient_accumulation_size,
print_rate,
save_rate,
validation_rate,
resume_path,
half_p,