1
0

fixed the brain worm discrepancy between epochs, iterations, and steps

This commit is contained in:
mrq 2023-02-23 15:31:43 +00:00
parent 1cbcf14cff
commit 487f2ebf32

View File

@ -445,9 +445,16 @@ class TrainingState():
with open(config_path, 'r') as file:
self.config = yaml.safe_load(file)
self.dataset_path = self.config['datasets']['train']['path']
with open(self.dataset_path, 'r', encoding="utf-8") as f:
self.dataset_size = len(f.readlines())
self.it = 0
self.its = self.config['train']['niter']
self.epoch = 0
self.epochs = int(self.its/self.dataset_size)
self.checkpoint = 0
self.checkpoints = int(self.its / self.config['logger']['save_checkpoint_freq'])
@ -459,10 +466,11 @@ class TrainingState():
self.info = {}
self.status = ""
self.it_rate = ""
self.it_time_start = 0
self.it_time_end = 0
self.epoch_rate = ""
self.epoch_time_start = 0
self.epoch_time_end = 0
self.eta = "?"
self.eta_hhmmss = "?"
print("Spawning process: ", " ".join(self.cmd))
self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
@ -473,27 +481,30 @@ class TrainingState():
# rip out iteration info
if not self.training_started:
if line.find('Start training from epoch') >= 0:
self.it_time_start = time.time()
self.epoch_time_start = time.time()
self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations
match = re.findall(r'epoch: ([\d,]+)', line)
if match and len(match) > 0:
self.epoch = int(match[0].replace(",", ""))
match = re.findall(r'iter: ([\d,]+)', line)
if match and len(match) > 0:
self.it = int(match[0].replace(",", ""))
elif progress is not None:
if line.find(' 0%|') == 0:
if line.find('%|') > 0 and not self.open_state:
self.open_state = True
elif line.find('100%|') == 0 and self.open_state:
self.open_state = False
self.it = self.it + 1
self.epoch = self.epoch + 1
self.it_time_end = time.time()
self.it_time_delta = self.it_time_end-self.it_time_start
self.it_time_start = time.time()
self.it_rate = f'[{"{:.3f}".format(self.it_time_delta)}s/it]' if self.it_time_delta >= 1 else f'[{"{:.3f}".format(1/self.it_time_delta)}it/s]' # I doubt anyone will have it/s rates, but its here
self.eta = (self.its - self.it) * self.it_time_delta
self.epoch_time_end = time.time()
self.epoch_time_delta = self.epoch_time_end-self.epoch_time_start
self.epoch_time_start = time.time()
self.epoch_rate = f'[{"{:.3f}".format(self.epoch_time_delta)}s/epoch]' if self.epoch_time_delta >= 1 else f'[{"{:.3f}".format(1/self.epoch_time_delta)}epoch/s]' # I doubt anyone will have it/s rates, but its here
self.eta = (self.epochs - self.epoch) * self.epoch_time_delta
self.eta_hhmmss = str(timedelta(seconds=int(self.eta)))
progress(self.it / float(self.its), f'[{self.it}/{self.its}] [ETA: {self.eta_hhmmss}] {self.it_rate} Training... {self.status}')
progress(self.epoch / float(self.epochs), f'[{self.epoch}/{self.epochs}] [ETA: {self.eta_hhmmss}] {self.epoch_rate} Training... {self.status}')
if line.find('INFO: [epoch:') >= 0:
# easily rip out our stats...
@ -501,12 +512,9 @@ class TrainingState():
if match and len(match) > 0:
for k, v in match:
self.info[k] = float(v)
# ...and returns our loss rate
# it would be nice for losses to be shown at every step
if 'loss_gpt_total' in self.info:
# self.info['step'] returns the steps, not iterations, so we won't even bother ripping the reported step count, as iteration count won't get ripped from the regex
self.status = f"Total loss at iteration {self.it}: {self.info['loss_gpt_total']}"
self.status = f"Total loss at epoch {self.epoch}: {self.info['loss_gpt_total']}"
elif line.find('Saving models and training states') >= 0:
self.checkpoint = self.checkpoint + 1
progress(self.checkpoint / float(self.checkpoints), f'[{self.checkpoint}/{self.checkpoints}] Saving checkpoint...')