1
0

training added, seems to work, need to test it more

This commit is contained in:
mrq 2023-02-17 16:29:27 +00:00
parent 229be0bdb8
commit 8d268bc7a3
2 changed files with 76 additions and 0 deletions

41
src/train.py Executable file
View File

@ -0,0 +1,41 @@
import torch
import argparse
import os
import sys
sys.path.insert(0, './dlas/codes/')
sys.path.insert(0, './dlas/')
from codes import train as tr
from utils import util, options as option
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vit_latent.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
if args.launcher != 'none':
# export CUDA_VISIBLE_DEVICES for running in distributed mode.
if 'gpu_ids' in opt.keys():
gpu_list = ','.join(str(x) for x in opt['gpu_ids'])
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
print('export CUDA_VISIBLE_DEVICES=' + gpu_list)
trainer = tr.Trainer()
#### distributed training settings
if args.launcher == 'none': # disabled distributed training
opt['dist'] = False
trainer.rank = -1
if len(opt['gpu_ids']) == 1:
torch.cuda.set_device(opt['gpu_ids'][0])
print('Disabled distributed training.')
else:
opt['dist'] = True
init_dist('nccl')
trainer.world_size = torch.distributed.get_world_size()
trainer.rank = torch.distributed.get_rank()
torch.cuda.set_device(torch.distributed.get_rank())
trainer.init(args.opt, opt, args.launcher)
trainer.do_training()

View File

@ -413,6 +413,41 @@ def setup_gradio():
inputs=training_settings,
outputs=None
)
with gr.Tab("Train"):
with gr.Row():
with gr.Column():
def get_training_configs():
configs = []
for i, file in enumerate(sorted(os.listdir(f"./training/"))):
if file[-5:] != ".yaml" or file[0] == ".":
continue
configs.append(f"./training/{file}")
return configs
def update_training_configs():
return gr.update(choices=get_training_configs())
training_configs = gr.Dropdown(label="Training Configuration", choices=get_training_configs())
refresh_configs = gr.Button(value="Refresh Configurations")
train = gr.Button(value="Train")
def run_training_proxy( config ):
global tts
del tts
import subprocess
subprocess.run(["python", "./src/train.py", "-opt", config], env=os.environ.copy(), shell=True)
"""
from train import train
train(config)
"""
refresh_configs.click(update_training_configs,inputs=None,outputs=training_configs)
train.click(run_training_proxy,
inputs=training_configs,
outputs=None
)
with gr.Tab("Settings"):
with gr.Row():
exec_inputs = []