1
0

added showing reported training accuracy and eval/validation metrics to graph

This commit is contained in:
mrq 2023-03-26 04:08:45 +00:00
parent 8c647c889d
commit c4ca04cc92

View File

@ -726,10 +726,6 @@ class TrainingState():
else:
return
if 'elapsed_time' in self.info:
self.info['iteration_rate'] = self.info['elapsed_time']
del self.info['elapsed_time']
self.info = data
if 'epoch' in self.info:
self.epoch = int(self.info['epoch'])
@ -740,6 +736,9 @@ class TrainingState():
if 'steps' in self.info:
self.steps = int(self.info['steps'])
if 'elapsed_time' in self.info:
self.info['iteration_rate'] = self.info['elapsed_time']
del self.info['elapsed_time']
if 'iteration_rate' in self.info:
it_rate = self.info['iteration_rate']
@ -772,12 +771,40 @@ class TrainingState():
if self.it > 0:
# probably can double for-loop but whatever
for k in ['lr'] if args.tts_backend == "tortoise" else ['ar.lr', 'nar.lr', 'ar-half.lr', 'nar-half.lr', 'ar-quarter.lr', 'nar-quarter.lr']:
keys = {
'lrs': ['lr'],
'losses': ['loss_text_ce', 'loss_mel_ce'],
'accuracy': [],
}
if args.tts_backend == "vall-e":
keys['lrs'] = [
'ar.lr', 'nar.lr',
'ar-half.lr', 'nar-half.lr',
'ar-quarter.lr', 'nar-quarter.lr',
]
keys['losses'] = [
'ar.loss', 'nar.loss',
'ar-half.loss', 'nar-half.loss',
'ar-quarter.loss', 'nar-quarter.loss',
'ar.loss.nll', 'nar.loss.nll',
'ar-half.loss.nll', 'nar-half.loss.nll',
'ar-quarter.loss.nll', 'nar-quarter.loss.nll',
]
keys['accuracies'] = [
'ar.acc', 'nar.acc',
'ar-half.acc', 'nar-half.acc',
'ar-quarter.acc', 'nar-quarter.acc',
]
for k in keys['lrs']:
if k not in self.info:
continue
self.statistics['lr'].append({'epoch': epoch, 'it': self.it, 'value': self.info[k], 'type': k})
for k in ['loss_text_ce', 'loss_mel_ce'] if args.tts_backend == "tortoise" else ['ar.loss', 'nar.loss', 'ar-half.loss', 'nar-half.loss', 'ar-quarter.loss', 'nar-quarter.loss']:
for k in keys['losses']:
if k not in self.info:
continue
@ -905,6 +932,9 @@ class TrainingState():
elif line.find('Validation Metrics:') >= 0:
data = json.loads(line.split("Validation Metrics:")[-1])
data['mode'] = "validation"
if "it" not in data:
data['it'] = it
else:
continue