1
0

clean up, reordered, added some rather liberal loading/unloading auxiliary models, can't really focus right now to keep testing it, report any issues and I'll get around to it

This commit is contained in:
mrq 2023-02-20 00:21:16 +00:00
parent c99cacec2e
commit d17f6fafb0

View File

@ -16,6 +16,7 @@ import re
import urllib.request
import signal
import gc
import subprocess
import tqdm
import torch
@ -40,91 +41,7 @@ tts = None
webui = None
voicefixer = None
whisper_model = None
def do_gc():
gc.collect()
def get_args():
global args
return args
def setup_args():
global args
default_arguments = {
'share': False,
'listen': None,
'check-for-updates': False,
'models-from-local-only': False,
'low-vram': False,
'sample-batch-size': None,
'embed-output-metadata': True,
'latents-lean-and-mean': True,
'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it
'voice-fixer-use-cuda': True,
'force-cpu-for-conditioning-latents': False,
'defer-tts-load': False,
'device-override': None,
'whisper-model': "base",
'autoregressive-model': None,
'concurrency-count': 2,
'output-sample-rate': 44100,
'output-volume': 1,
}
if os.path.isfile('./config/exec.json'):
with open(f'./config/exec.json', 'r', encoding="utf-8") as f:
overrides = json.load(f)
for k in overrides:
default_arguments[k] = overrides[k]
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on")
parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup")
parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models")
parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage")
parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)")
parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.")
parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.")
parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.")
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
parser.add_argument("--os", default="unix", help="Specifies which OS, easily")
args = parser.parse_args()
args.embed_output_metadata = not args.no_embed_output_metadata
set_device_name(args.device_override)
args.listen_host = None
args.listen_port = None
args.listen_path = None
if args.listen:
try:
match = re.findall(r"^(?:(.+?):(\d+))?(\/.+?)?$", args.listen)[0]
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
args.listen_port = match[1] if match[1] != "" else None
args.listen_path = match[2] if match[2] != "" else "/"
except Exception as e:
pass
if args.listen_port is not None:
args.listen_port = int(args.listen_port)
return args
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
training_process = None
def generate(
text,
@ -154,10 +71,14 @@ def generate(
global tts
if not tts:
# should check if it's loading or unloaded, and load it if it's unloaded
raise Exception("TTS is uninitialized or still initializing...")
do_gc()
unload_whisper()
unload_voicefixer()
if voice != "microphone":
voices = [voice]
else:
@ -244,7 +165,7 @@ def generate(
audio_cache = {}
resample = None
# not a ternary in the event for some reason I want to rely on librosa's upsampling interpolator rather than torchaudio's, for some reason
if tts.output_sample_rate != args.output_sample_rate:
resampler = torchaudio.transforms.Resample(
tts.output_sample_rate,
@ -385,7 +306,10 @@ def generate(
with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
if args.voice_fixer and voicefixer is not None:
if args.voice_fixer:
if not voicefixer:
load_voicefixer()
fixed_output_voices = []
for path in progress.tqdm(output_voices, desc="Running voicefix..."):
fixed = path.replace(".wav", "_fixed.wav")
@ -434,23 +358,43 @@ def generate(
stats,
)
import subprocess
def cancel_generate():
from tortoise.api import STOP_SIGNAL
STOP_SIGNAL = True
def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)):
global tts
global args
if not tts:
raise Exception("TTS is uninitialized or still initializing...")
unload_whisper()
unload_voicefixer()
voice_samples, conditioning_latents = load_voice(voice, load_latents=False)
if voice_samples is None:
return
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents.pth')
return voice
training_process = None
def run_training(config_path, verbose=False, buffer_size=8, progress=gr.Progress(track_tqdm=True)):
try:
print("Unloading TTS to save VRAM.")
global tts
del tts
tts = None
trytorch.cuda.empty_cache()
except Exception as e:
pass
global training_process
torch.multiprocessing.freeze_support()
do_gc()
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
torch.multiprocessing.freeze_support()
unload_tts()
unload_whisper()
unload_voicefixer()
cmd = ['train.bat', config_path] if os.name == "nt" else ['bash', './train.sh', config_path]
print("Spawning process: ", " ".join(cmd))
@ -510,7 +454,6 @@ def run_training(config_path, verbose=False, buffer_size=8, progress=gr.Progress
return "".join(buffer[-buffer_size:])
def stop_training():
global training_process
if training_process is None:
@ -519,66 +462,51 @@ def stop_training():
training_process = None
return "Training cancelled"
def setup_voicefixer(restart=False):
global voicefixer
if restart:
del voicefixer
voicefixer = None
def prepare_dataset( files, outdir, language=None, progress=None ):
unload_tts()
try:
print("Initializating voice-fixer")
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
print("initialized voice-fixer")
except Exception as e:
print(f"Error occurred while tring to initialize voicefixer: {e}")
global whisper_model
if whisper_model is None:
load_whisper_model()
def setup_tortoise(restart=False):
global args
global tts
os.makedirs(outdir, exist_ok=True)
do_gc()
idx = 0
results = {}
transcription = []
if args.voice_fixer:
setup_voicefixer(restart=restart)
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
print(f"Transcribing file: {file}")
result = whisper_model.transcribe(file, language=language if language else "English")
results[os.path.basename(file)] = result
if restart:
del tts
tts = None
print(f"Transcribed file: {file}, {len(result['segments'])} found.")
print(f"Initializating TorToiSe... (using model: {args.autoregressive_model})")
try:
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
except Exception as e:
tts = TextToSpeech(minor_optimizations=not args.low_vram)
load_autoregressive_model(args.autoregressive_model)
waveform, sampling_rate = torchaudio.load(file)
num_channels, num_frames = waveform.shape
get_model_path('dvae.pth')
print("TorToiSe initialized, ready for generation.")
return tts
for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress):
start = int(segment['start'] * sampling_rate)
end = int(segment['end'] * sampling_rate)
def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)):
global tts
global args
sliced_waveform = waveform[:, start:end]
sliced_name = f"{pad(idx, 4)}.wav"
if not tts:
raise Exception("TTS is uninitialized or still initializing...")
torchaudio.save(f"{outdir}/{sliced_name}", sliced_waveform, sampling_rate)
do_gc()
transcription.append(f"{sliced_name}|{segment['text'].strip()}")
idx = idx + 1
with open(f'{outdir}/whisper.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(results, indent='\t'))
with open(f'{outdir}/train.txt', 'w', encoding="utf-8") as f:
f.write("\n".join(transcription))
voice_samples, conditioning_latents = load_voice(voice, load_latents=False)
unload_whisper()
if voice_samples is None:
return
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents.pth')
return voice
return f"Processed dataset to: {outdir}"
def calc_iterations( epochs, lines, batch_size ):
iterations = int(epochs * lines / float(batch_size))
@ -679,54 +607,6 @@ def save_training_settings( iterations=None, batch_size=None, learning_rate=None
return f"Training settings saved to: {outfile}"
def prepare_dataset( files, outdir, language=None, progress=None ):
global whisper_model
if whisper_model is None:
notify_progress(f"Loading Whisper model: {args.whisper_model}", progress)
whisper_model = whisper.load_model(args.whisper_model)
os.makedirs(outdir, exist_ok=True)
idx = 0
results = {}
transcription = []
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
print(f"Transcribing file: {file}")
result = whisper_model.transcribe(file, language=language if language else "English")
results[os.path.basename(file)] = result
print(f"Transcribed file: {file}, {len(result['segments'])} found.")
waveform, sampling_rate = torchaudio.load(file)
num_channels, num_frames = waveform.shape
for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress):
start = int(segment['start'] * sampling_rate)
end = int(segment['end'] * sampling_rate)
sliced_waveform = waveform[:, start:end]
sliced_name = f"{pad(idx, 4)}.wav"
torchaudio.save(f"{outdir}/{sliced_name}", sliced_waveform, sampling_rate)
transcription.append(f"{sliced_name}|{segment['text'].strip()}")
idx = idx + 1
with open(f'{outdir}/whisper.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(results, indent='\t'))
with open(f'{outdir}/train.txt', 'w', encoding="utf-8") as f:
f.write("\n".join(transcription))
return f"Processed dataset to: {outdir}"
def reset_generation_settings():
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps({}, indent='\t') )
return import_generate_settings()
def import_voices(files, saveAs=None, progress=None):
global args
@ -760,7 +640,10 @@ def import_voices(files, saveAs=None, progress=None):
waveform, sampling_rate = torchaudio.load(filename)
if args.voice_fixer and voicefixer is not None:
if args.voice_fixer:
if not voicefixer:
load_voicefixer()
# resample to best bandwidth since voicefixer will do it anyways through librosa
if sampling_rate != 44100:
print(f"Resampling imported voice sample: {path}")
@ -789,35 +672,29 @@ def import_voices(files, saveAs=None, progress=None):
print(f"Imported voice to {path}")
def import_generate_settings(file="./config/generate.json"):
settings, _ = read_generate_settings(file, read_latents=False)
if settings is None:
return None
def get_voice_list(dir=get_voice_dir()):
os.makedirs(dir, exist_ok=True)
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ]) + ["microphone", "random"]
return (
None if 'text' not in settings else settings['text'],
None if 'delimiter' not in settings else settings['delimiter'],
None if 'emotion' not in settings else settings['emotion'],
None if 'prompt' not in settings else settings['prompt'],
None if 'voice' not in settings else settings['voice'],
None,
None,
None if 'seed' not in settings else settings['seed'],
None if 'candidates' not in settings else settings['candidates'],
None if 'num_autoregressive_samples' not in settings else settings['num_autoregressive_samples'],
None if 'diffusion_iterations' not in settings else settings['diffusion_iterations'],
0.8 if 'temperature' not in settings else settings['temperature'],
"DDIM" if 'diffusion_sampler' not in settings else settings['diffusion_sampler'],
8 if 'breathing_room' not in settings else settings['breathing_room'],
0.0 if 'cvvp_weight' not in settings else settings['cvvp_weight'],
0.8 if 'top_p' not in settings else settings['top_p'],
1.0 if 'diffusion_temperature' not in settings else settings['diffusion_temperature'],
1.0 if 'length_penalty' not in settings else settings['length_penalty'],
2.0 if 'repetition_penalty' not in settings else settings['repetition_penalty'],
2.0 if 'cond_free_k' not in settings else settings['cond_free_k'],
None if 'experimentals' not in settings else settings['experimentals'],
)
def get_autoregressive_models(dir="./models/finetunes/"):
os.makedirs(dir, exist_ok=True)
return [get_model_path('autoregressive.pth')] + sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ])
def get_dataset_list(dir="./training/"):
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.txt" in os.listdir(os.path.join(dir, d)) ])
def get_training_list(dir="./training/"):
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
def do_gc():
gc.collect()
try:
trytorch.cuda.empty_cache()
except Exception as e:
pass
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
def curl(url):
try:
@ -866,71 +743,102 @@ def check_for_updates():
return False
def reload_tts():
setup_tortoise(restart=True)
def enumerate_progress(iterable, desc=None, progress=None, verbose=None):
if verbose and desc is not None:
print(desc)
def cancel_generate():
from tortoise.api import STOP_SIGNAL
STOP_SIGNAL = True
if progress is None:
return tqdm(iterable, disable=not verbose)
return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True)
def get_voice_list(dir=get_voice_dir()):
os.makedirs(dir, exist_ok=True)
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ]) + ["microphone", "random"]
def notify_progress(message, progress=None, verbose=True):
if verbose:
print(message)
def get_autoregressive_models(dir="./models/finetunes/"):
os.makedirs(dir, exist_ok=True)
return [get_model_path('autoregressive.pth')] + sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ])
if progress is None:
return
def get_dataset_list(dir="./training/"):
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.txt" in os.listdir(os.path.join(dir, d)) ])
progress(0, desc=message)
def get_training_list(dir="./training/"):
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
def get_args():
global args
return args
def update_whisper_model(name):
global whisper_model
if whisper_model:
del whisper_model
whisper_model = None
def setup_args():
global args
default_arguments = {
'share': False,
'listen': None,
'check-for-updates': False,
'models-from-local-only': False,
'low-vram': False,
'sample-batch-size': None,
'embed-output-metadata': True,
'latents-lean-and-mean': True,
'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it
'voice-fixer-use-cuda': True,
'force-cpu-for-conditioning-latents': False,
'defer-tts-load': False,
'device-override': None,
'whisper-model': "base",
'autoregressive-model': None,
'concurrency-count': 2,
'output-sample-rate': 44100,
'output-volume': 1,
}
if os.path.isfile('./config/exec.json'):
with open(f'./config/exec.json', 'r', encoding="utf-8") as f:
overrides = json.load(f)
for k in overrides:
default_arguments[k] = overrides[k]
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on")
parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup")
parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models")
parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage")
parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)")
parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.")
parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.")
parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.")
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
args.whisper_model = name
parser.add_argument("--os", default="unix", help="Specifies which OS, easily")
args = parser.parse_args()
print(f"Loading Whisper model: {args.whisper_model}")
whisper_model = whisper.load_model(args.whisper_model)
args.embed_output_metadata = not args.no_embed_output_metadata
def update_autoregressive_model(autoregressive_model_path):
args.autoregressive_model = autoregressive_model_path
save_args_settings()
print(f'Stored autoregressive model to settings: {autoregressive_model_path}')
if not args.device_override:
set_device_name(args.device_override)
global tts
if not tts:
raise Exception("TTS is uninitialized or still initializing...")
args.listen_host = None
args.listen_port = None
args.listen_path = None
if args.listen:
try:
match = re.findall(r"^(?:(.+?):(\d+))?(\/.+?)?$", args.listen)[0]
print(f"Loading model: {autoregressive_model_path}")
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
args.listen_port = match[1] if match[1] != "" else None
args.listen_path = match[2] if match[2] != "" else "/"
except Exception as e:
pass
if hasattr(tts, 'load_autoregressive_model') and tts.load_autoregressive_model(autoregressive_model_path):
tts.load_autoregressive_model(autoregressive_model_path)
# polyfill in case a user did NOT update the packages
# this shouldn't happen anymore, as I just clone mrq/tortoise-tts, and inject it into sys.path
else:
from tortoise.models.autoregressive import UnifiedVoice
tts.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', tts.models_dir)
del tts.autoregressive
tts.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False).cpu().eval()
tts.autoregressive.load_state_dict(torch.load(tts.autoregressive_model_path))
tts.autoregressive.post_init_gpt2_config(kv_cache=tts.use_kv_cache)
if tts.preloaded_tensors:
tts.autoregressive = tts.autoregressive.to(tts.device)
print(f"Loaded model: {tts.autoregressive_model_path}")
if args.listen_port is not None:
args.listen_port = int(args.listen_port)
return autoregressive_model_path
return args
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, device_override, sample_batch_size, concurrency_count, output_sample_rate, output_volume ):
global args
@ -980,6 +888,44 @@ def save_args_settings():
with open(f'./config/exec.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
def import_generate_settings(file="./config/generate.json"):
settings, _ = read_generate_settings(file, read_latents=False)
if settings is None:
return None
return (
None if 'text' not in settings else settings['text'],
None if 'delimiter' not in settings else settings['delimiter'],
None if 'emotion' not in settings else settings['emotion'],
None if 'prompt' not in settings else settings['prompt'],
None if 'voice' not in settings else settings['voice'],
None,
None,
None if 'seed' not in settings else settings['seed'],
None if 'candidates' not in settings else settings['candidates'],
None if 'num_autoregressive_samples' not in settings else settings['num_autoregressive_samples'],
None if 'diffusion_iterations' not in settings else settings['diffusion_iterations'],
0.8 if 'temperature' not in settings else settings['temperature'],
"DDIM" if 'diffusion_sampler' not in settings else settings['diffusion_sampler'],
8 if 'breathing_room' not in settings else settings['breathing_room'],
0.0 if 'cvvp_weight' not in settings else settings['cvvp_weight'],
0.8 if 'top_p' not in settings else settings['top_p'],
1.0 if 'diffusion_temperature' not in settings else settings['diffusion_temperature'],
1.0 if 'length_penalty' not in settings else settings['length_penalty'],
2.0 if 'repetition_penalty' not in settings else settings['repetition_penalty'],
2.0 if 'cond_free_k' not in settings else settings['cond_free_k'],
None if 'experimentals' not in settings else settings['experimentals'],
)
def reset_generation_settings():
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps({}, indent='\t') )
return import_generate_settings()
def read_generate_settings(file, read_latents=True, read_json=True):
j = None
latents = None
@ -1013,19 +959,119 @@ def read_generate_settings(file, read_latents=True, read_json=True):
latents,
)
def enumerate_progress(iterable, desc=None, progress=None, verbose=None):
if verbose and desc is not None:
print(desc)
def load_tts(restart=False):
global args
global tts
if progress is None:
return tqdm(iterable, disable=not verbose)
return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True)
if restart:
unload_tts()
def notify_progress(message, progress=None, verbose=True):
if verbose:
print(message)
print(f"Loading TorToiSe... (using model: {args.autoregressive_model})")
try:
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
except Exception as e:
tts = TextToSpeech(minor_optimizations=not args.low_vram)
load_autoregressive_model(args.autoregressive_model)
if progress is None:
return
get_model_path('dvae.pth')
print("Loaded TorToiSe, ready for generation.")
return tts
progress(0, desc=message)
setup_tortoise = load_tts
def unload_tts():
global tts
if tts:
print("Unloading TTS")
del tts
tts = None
do_gc()
def reload_tts():
setup_tortoise(restart=True)
def update_autoregressive_model(autoregressive_model_path):
args.autoregressive_model = autoregressive_model_path
save_args_settings()
print(f'Stored autoregressive model to settings: {autoregressive_model_path}')
global tts
if not tts:
raise Exception("TTS is uninitialized or still initializing...")
print(f"Loading model: {autoregressive_model_path}")
if hasattr(tts, 'load_autoregressive_model') and tts.load_autoregressive_model(autoregressive_model_path):
tts.load_autoregressive_model(autoregressive_model_path)
# polyfill in case a user did NOT update the packages
# this shouldn't happen anymore, as I just clone mrq/tortoise-tts, and inject it into sys.path
else:
from tortoise.models.autoregressive import UnifiedVoice
tts.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', tts.models_dir)
del tts.autoregressive
tts.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False).cpu().eval()
tts.autoregressive.load_state_dict(torch.load(tts.autoregressive_model_path))
tts.autoregressive.post_init_gpt2_config(kv_cache=tts.use_kv_cache)
if tts.preloaded_tensors:
tts.autoregressive = tts.autoregressive.to(tts.device)
print(f"Loaded model: {tts.autoregressive_model_path}")
do_gc()
return autoregressive_model_path
def load_voicefixer(restart=False):
global voicefixer
if restart:
unload_voicefixer()
try:
print("Loading Voicefixer")
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
except Exception as e:
print(f"Error occurred while tring to initialize voicefixer: {e}")
def unload_voicefixer():
global voicefixer
if voicefixer:
print("Unloading Voicefixer")
del voicefixer
voicefixer = None
do_gc()
def load_whisper_model(name=None, progress=None):
if not name:
name = args.whisper_model
else:
args.whisper_model = name
notify_progress(f"Loading Whisper model: {args.whisper_model}", progress)
whisper_model = whisper.load_model(args.whisper_model)
def unload_whisper():
global whisper_model
if whisper_model:
print("Unloading Whisper")
del whisper_model
whisper_model = None
do_gc()
def update_whisper_model(name, progress=None):
global whisper_model
if whisper_model:
unload_whisper()
load_whisper_model(name)