1
0

reworked generating metadata to embed, should now store overrided settings

This commit is contained in:
mrq 2023-03-06 23:07:16 +00:00
parent 7798767fc6
commit e731b9ba84

View File

@ -282,6 +282,72 @@ def generate(
name = f"{name}_{candidate}" name = f"{name}_{candidate}"
return name return name
def get_info( voice, settings = None, latents = True ):
info = {
'text': text,
'delimiter': '\\n' if delimiter and delimiter == "\n" else delimiter,
'emotion': emotion,
'prompt': prompt,
'voice': voice,
'seed': seed,
'candidates': candidates,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'temperature': temperature,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'cvvp_weight': cvvp_weight,
'top_p': top_p,
'diffusion_temperature': diffusion_temperature,
'length_penalty': length_penalty,
'repetition_penalty': repetition_penalty,
'cond_free_k': cond_free_k,
'experimentals': experimental_checkboxes,
'time': time.time()-full_start_time,
'datetime': datetime.now().isoformat(),
'model': tts.autoregressive_model_path,
'model_hash': tts.autoregressive_model_hash if hasattr(tts, 'autoregressive_model_hash') else None,
}
if settings is not None:
for k in settings:
if k in info:
info[k] = settings[k]
if 'half_p' in settings and 'cond_free' in settings:
info['experimentals'] = []
if settings['half_p']:
info['experimentals'].append("Half Precision")
if settings['cond_free']:
info['experimentals'].append("Conditioning-Free")
if latents and "latents" not in info:
voice = info['voice']
latents_path = f'{get_voice_dir()}/{voice}/cond_latents.pth'
if voice == "random" or voice == "microphone":
if latents and settings['conditioning_latents']:
dir = f'{get_voice_dir()}/{voice}/'
if not os.path.isdir(dir):
os.makedirs(dir, exist_ok=True)
latents_path = f'{dir}/cond_latents.pth'
torch.save(conditioning_latents, latents_path)
else:
if settings and "model_hash" in settings:
latents_path = f'{get_voice_dir()}/{voice}/cond_latents_{settings["model_hash"][:8]}.pth'
elif hasattr(tts, "autoregressive_model_hash"):
latents_path = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth'
if latents_path and os.path.exists(latents_path):
try:
with open(latents_path, 'rb') as f:
info['latents'] = base64.b64encode(f.read()).decode("ascii")
except Exception as e:
pass
return info
for line, cut_text in enumerate(texts): for line, cut_text in enumerate(texts):
if emotion == "Custom": if emotion == "Custom":
if prompt and prompt.strip() != "": if prompt and prompt.strip() != "":
@ -295,6 +361,7 @@ def generate(
# do setting editing # do setting editing
match = re.findall(r'^(\{.+\}) (.+?)$', cut_text) match = re.findall(r'^(\{.+\}) (.+?)$', cut_text)
override = None
if match and len(match) > 0: if match and len(match) > 0:
match = match[0] match = match[0]
try: try:
@ -304,11 +371,11 @@ def generate(
raise Exception("Prompt settings editing requested, but received invalid JSON") raise Exception("Prompt settings editing requested, but received invalid JSON")
cut_text = match[1].strip() cut_text = match[1].strip()
new_settings = get_settings( override ) used_settings = get_settings( override )
gen, additionals = tts.tts(cut_text, **new_settings )
else: else:
gen, additionals = tts.tts(cut_text, **settings ) used_settings = settings.copy()
gen, additionals = tts.tts(cut_text, **used_settings )
seed = additionals[0] seed = additionals[0]
run_time = time.time()-start_time run_time = time.time()-start_time
@ -320,10 +387,16 @@ def generate(
for j, g in enumerate(gen): for j, g in enumerate(gen):
audio = g.squeeze(0).cpu() audio = g.squeeze(0).cpu()
name = get_name(line=line, candidate=j) name = get_name(line=line, candidate=j)
used_settings['text'] = cut_text
used_settings['time'] = run_time
used_settings['datetime'] = datetime.now().isoformat(),
used_settings['model'] = tts.autoregressive_model_path
used_settings['model_hash'] = tts.autoregressive_model_hash if hasattr(tts, 'autoregressive_model_hash') else None
audio_cache[name] = { audio_cache[name] = {
'audio': audio, 'audio': audio,
'text': cut_text, 'settings': get_info(voice=override['voice'] if override and 'voice' in override else voice, settings=used_settings)
'time': run_time
} }
# save here in case some error happens mid-batch # save here in case some error happens mid-batch
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate) torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate)
@ -341,7 +414,7 @@ def generate(
audio_cache[k]['audio'] = audio audio_cache[k]['audio'] = audio
torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate) torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate)
output_voices = [] output_voices = []
for candidate in range(candidates): for candidate in range(candidates):
if len(texts) > 1: if len(texts) > 1:
@ -358,40 +431,13 @@ def generate(
audio = audio.squeeze(0).cpu() audio = audio.squeeze(0).cpu()
audio_cache[name] = { audio_cache[name] = {
'audio': audio, 'audio': audio,
'text': text, 'settings': get_info(voice=voice),
'time': time.time()-full_start_time,
'output': True 'output': True
} }
else: else:
name = get_name(candidate=candidate) name = get_name(candidate=candidate)
audio_cache[name]['output'] = True audio_cache[name]['output'] = True
info = {
'text': text,
'delimiter': '\\n' if delimiter and delimiter == "\n" else delimiter,
'emotion': emotion,
'prompt': prompt,
'voice': voice,
'seed': seed,
'candidates': candidates,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'temperature': temperature,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'cvvp_weight': cvvp_weight,
'top_p': top_p,
'diffusion_temperature': diffusion_temperature,
'length_penalty': length_penalty,
'repetition_penalty': repetition_penalty,
'cond_free_k': cond_free_k,
'experimentals': experimental_checkboxes,
'time': time.time()-full_start_time,
'datetime': datetime.now().isoformat(),
'model': tts.autoregressive_model_path,
'model_hash': tts.autoregressive_model_hash if hasattr(tts, 'autoregressive_model_hash') else None,
}
if args.voice_fixer: if args.voice_fixer:
if not voicefixer: if not voicefixer:
@ -414,8 +460,7 @@ def generate(
) )
fixed_cache[f'{name}_fixed'] = { fixed_cache[f'{name}_fixed'] = {
'text': audio_cache[name]['text'], 'settings': audio_cache[name]['settings'],
'time': audio_cache[name]['time'],
'output': True 'output': True
} }
audio_cache[name]['output'] = False audio_cache[name]['output'] = False
@ -434,36 +479,21 @@ def generate(
if not args.embed_output_metadata: if not args.embed_output_metadata:
with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f: with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') ) f.write(json.dumps(audio_cache[name]['settings'], indent='\t') )
if voice and voice != "random" and conditioning_latents is not None:
latents_path = f'{get_voice_dir()}/{voice}/cond_latents.pth'
if hasattr(tts, 'autoregressive_model_hash'):
latents_path = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth'
try:
with open(latents_path, 'rb') as f:
info['latents'] = base64.b64encode(f.read()).decode("ascii")
except Exception as e:
pass
if args.embed_output_metadata: if args.embed_output_metadata:
for name in progress.tqdm(audio_cache, desc="Embedding metadata..."): for name in progress.tqdm(audio_cache, desc="Embedding metadata..."):
if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']: if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']:
continue continue
info['text'] = audio_cache[name]['text']
info['time'] = audio_cache[name]['time']
metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav") metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav")
metadata['lyrics'] = json.dumps(info) metadata['lyrics'] = json.dumps(audio_cache[name]['settings'])
metadata.save() metadata.save()
if sample_voice is not None: if sample_voice is not None:
sample_voice = (tts.input_sample_rate, sample_voice.numpy()) sample_voice = (tts.input_sample_rate, sample_voice.numpy())
info = get_info(voice=voice, latents=False)
print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n") print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n")
info['seed'] = settings['use_deterministic_seed'] info['seed'] = settings['use_deterministic_seed']