#include #include #include #include #include #include #include "private.h" #include "platform.h" GLubyte ACTIVE_CLIENT_TEXTURE; extern GLboolean AUTOSORT_ENABLED; #define ITERATE(count) \ GLuint i = count; \ while(i--) typedef GLuint (*IndexParseFunc)(const GLubyte* in); static inline GLuint _parseUByteIndex(const GLubyte* in) { return (GLuint) *in; } static inline GLuint _parseUIntIndex(const GLubyte* in) { return *((GLuint*) in); } static inline GLuint _parseUShortIndex(const GLubyte* in) { return *((GLshort*) in); } GL_FORCE_INLINE GLsizei index_size(GLenum type) { switch(type) { case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_UNSIGNED_INT: return sizeof(GLuint); default: return sizeof(GLushort); } } GL_FORCE_INLINE IndexParseFunc _calcParseIndexFunc(GLenum type) { switch(type) { case GL_UNSIGNED_BYTE: return &_parseUByteIndex; break; case GL_UNSIGNED_INT: return &_parseUIntIndex; break; case GL_UNSIGNED_SHORT: default: break; } return &_parseUShortIndex; } /* There was a bug in this macro that shipped with Kos * which has now been fixed. But just in case... */ #undef mat_trans_single3_nodiv #define mat_trans_single3_nodiv(x, y, z) { \ register float __x __asm__("fr12") = (x); \ register float __y __asm__("fr13") = (y); \ register float __z __asm__("fr14") = (z); \ __asm__ __volatile__( \ "fldi1 fr15\n" \ "ftrv xmtrx, fv12\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr15"); \ x = __x; y = __y; z = __z; \ } /* FIXME: Is this right? Shouldn't it be fr12->15? */ #undef mat_trans_normal3 #define mat_trans_normal3(x, y, z) { \ register float __x __asm__("fr8") = (x); \ register float __y __asm__("fr9") = (y); \ register float __z __asm__("fr10") = (z); \ __asm__ __volatile__( \ "fldi0 fr11\n" \ "ftrv xmtrx, fv8\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr11"); \ x = __x; y = __y; z = __z; \ } GL_FORCE_INLINE PolyHeader *_glSubmissionTargetHeader(SubmissionTarget* target) { gl_assert(target->header_offset < aligned_vector_size(&target->output->vector)); return aligned_vector_at(&target->output->vector, target->header_offset); } GL_INLINE_DEBUG Vertex* _glSubmissionTargetStart(SubmissionTarget* target) { gl_assert(target->start_offset < aligned_vector_size(&target->output->vector)); return aligned_vector_at(&target->output->vector, target->start_offset); } Vertex* _glSubmissionTargetEnd(SubmissionTarget* target) { return _glSubmissionTargetStart(target) + target->count; } GL_FORCE_INLINE void genTriangles(Vertex* output, GLuint count) { Vertex* it = output + 2; GLuint i; for(i = 0; i < count; i += 3) { it->flags = GPU_CMD_VERTEX_EOL; it += 3; } } GL_FORCE_INLINE void genQuads(Vertex* output, GLuint count) { Vertex* pen = output + 2; Vertex* final = output + 3; GLuint i = count >> 2; while(i--) { PREFETCH(pen + 4); PREFETCH(final + 4); swapVertex(pen, final); final->flags = GPU_CMD_VERTEX_EOL; pen += 4; final += 4; } } GL_FORCE_INLINE void genTriangleStrip(Vertex* output, GLuint count) { output[count - 1].flags = GPU_CMD_VERTEX_EOL; } #define QUADSTRIP_COUNT(count) (((count) - 2) * 2) static GL_NO_INLINE void genQuadStrip(Vertex* output, GLuint count) { Vertex* dst = output + QUADSTRIP_COUNT(count) - 1; Vertex* src = output + count;//(count - 1); for (; count > 2; count -= 2) { // Have to copy because of src/dst overlapping on first quad Vertex src1 = src[-1], src2 = src[-2], src3 = src[-3], src4 = src[-4]; *dst = src3; (*dst--).flags = GPU_CMD_VERTEX_EOL; *dst-- = src4; *dst-- = src1; *dst-- = src2; src -= 2; } } #define TRIFAN_COUNT(count) (((count) - 2) * 3) static GL_NO_INLINE void genTriangleFan(Vertex* output, GLuint count) { Vertex* dst = output + TRIFAN_COUNT(count) - 1; Vertex* src = output + count - 1; // Triangles generated as {first vertex, prior vertex, current vertex} // e.g. {v1, v2, v3, v4} produces {v1, v2, v3}, {v1, v3, v4} for (; count > 2; count--) { *dst = *src--; (*dst--).flags = GPU_CMD_VERTEX_EOL; *dst-- = *src; *dst-- = *output; } } #define POINTS_COUNT(count) ((count) * 4) static GL_NO_INLINE void genPoints(Vertex* output, GLuint count) { Vertex* dst = output + POINTS_COUNT(count) - 1; Vertex* src = output + count - 1; float half_size = HALF_POINT_SIZE; // Expands v to { v + (S/2,-S/2), v + (S/2,S/2), v + (-S/2,-S/2), (-S/2,S/2) } for (; count > 0; count--, src--) { *dst = *src; dst->flags = GPU_CMD_VERTEX_EOL; dst->xyz[0] -= half_size; dst->xyz[1] += half_size; dst--; *dst = *src; dst->xyz[0] += half_size; dst->xyz[1] += half_size; dst--; *dst = *src; dst->xyz[0] -= half_size; dst->xyz[1] -= half_size; dst--; *dst = *src; dst->xyz[0] += half_size; dst->xyz[1] -= half_size; dst--; } } // Heavily based on the pvrline example by jnmartin84 // Which is based on https://devcry.heiho.net/html/2017/20170820-opengl-line-drawing.html static Vertex* draw_line(Vertex* dst, Vertex* v1, Vertex* v2) { Vertex ov1 = *v1; Vertex ov2 = *v2; // TODO don't copy unless dst might overlap v1/v2 // Essentially "expands" a line into a quad by // 1) Calculating normal of the line from v1 to v2 // 2) Scaling normal by the line width // 3) Offseting the endpoints wrt the scaled normal float dx = ov2.xyz[0] - ov1.xyz[0]; float dy = ov2.xyz[1] - ov1.xyz[1]; float inverse_mag = fast_rsqrt((dx*dx) + (dy*dy)) * HALF_LINE_WIDTH; float nx = -dy * inverse_mag; float ny = dx * inverse_mag; *dst = ov2; dst->flags = GPU_CMD_VERTEX_EOL; dst->xyz[0] -= nx; dst->xyz[1] -= ny; dst--; *dst = ov1; dst->xyz[0] -= nx; dst->xyz[1] -= ny; dst--; *dst = ov2; dst->xyz[0] += nx; dst->xyz[1] += ny; dst--; *dst = ov1; dst->xyz[0] += nx; dst->xyz[1] += ny; dst--; return dst; } #define LINES_COUNT(count) (((count) / 2) * 4) static GL_NO_INLINE void genLines(Vertex* output, GLuint count) { Vertex* dst = output + LINES_COUNT(count) - 1; Vertex* src = output + count - 1; // Draws line using two vertices for (; count >= 2; count -= 2, src -= 2) { dst = draw_line(dst, src, src - 1); } } #define LINE_STRIP_COUNT(count) (((count) - 1) * 4) static GL_NO_INLINE void genLineStrip(Vertex* output, GLuint count) { Vertex* dst = output + LINE_STRIP_COUNT(count) - 1; Vertex* src = output + count - 1; // Draws line using current and prior vertex for (; count > 1; count--, src--) { dst = draw_line(dst, src, src - 1); } } #define LINE_LOOP_COUNT(count) ((count) * 4) static GL_NO_INLINE void genLineLoop(Vertex* output, GLuint count) { Vertex* dst = output + LINE_LOOP_COUNT(count) - 1; Vertex* src = output + count - 1; Vertex last = *src, first = *output; // Draws line using current and prior vertex for (; count > 1; count--, src--) { dst = draw_line(dst, src, src - 1); } // Connect first and last vertex draw_line(dst, &first, &last); } static void _readPositionData(const GLuint first, const GLuint count, Vertex* it) { const ReadAttributeFunc func = ATTRIB_LIST.vertex_func; const GLsizei vstride = ATTRIB_LIST.vertex.stride; const GLubyte* vptr = ((GLubyte*) ATTRIB_LIST.vertex.ptr + (first * vstride)); ITERATE(count) { PREFETCH(vptr + vstride); func(vptr, (GLubyte*) it); it->flags = GPU_CMD_VERTEX; vptr += vstride; ++it; } } static void _readUVData(const GLuint first, const GLuint count, Vertex* it) { const ReadAttributeFunc func = ATTRIB_LIST.uv_func; const GLsizei uvstride = ATTRIB_LIST.uv.stride; const GLubyte* uvptr = ((GLubyte*) ATTRIB_LIST.uv.ptr + (first * uvstride)); ITERATE(count) { PREFETCH(uvptr + uvstride); func(uvptr, (GLubyte*) it->uv); uvptr += uvstride; ++it; } } static void _readSTData(const GLuint first, const GLuint count, VertexExtra* it) { const ReadAttributeFunc func = ATTRIB_LIST.st_func; const GLsizei ststride = ATTRIB_LIST.st.stride; const GLubyte* stptr = ((GLubyte*) ATTRIB_LIST.st.ptr + (first * ststride)); ITERATE(count) { PREFETCH(stptr + ststride); func(stptr, (GLubyte*) it->st); stptr += ststride; ++it; } } static void _readNormalData(const GLuint first, const GLuint count, VertexExtra* it) { const ReadAttributeFunc func = ATTRIB_LIST.normal_func; const GLsizei nstride = ATTRIB_LIST.normal.stride; const GLubyte* nptr = ((GLubyte*) ATTRIB_LIST.normal.ptr + (first * nstride)); ITERATE(count) { func(nptr, (GLubyte*) it->nxyz); nptr += nstride; if(_glIsNormalizeEnabled()) { GLfloat* n = (GLfloat*) it->nxyz; float temp = n[0] * n[0] + n[1] * n[1] + n[2] * n[2]; float ilength = MATH_fsrra(temp); n[0] *= ilength; n[1] *= ilength; n[2] *= ilength; } ++it; } } static void _readDiffuseData(const GLuint first, const GLuint count, Vertex* it) { const ReadAttributeFunc func = ATTRIB_LIST.colour_func; const GLuint cstride = ATTRIB_LIST.colour.stride; const GLubyte* cptr = ((GLubyte*) ATTRIB_LIST.colour.ptr) + (first * cstride); ITERATE(count) { PREFETCH(cptr + cstride); func(cptr, it->bgra); cptr += cstride; ++it; } } static void generateElements( SubmissionTarget* target, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type) { const GLsizei istride = index_size(type); const IndexParseFunc IndexFunc = _calcParseIndexFunc(type); GLubyte* xyz; GLubyte* uv; GLubyte* bgra; GLubyte* st; GLubyte* nxyz; Vertex* output = _glSubmissionTargetStart(target); VertexExtra* ve = aligned_vector_at(target->extras, 0); uint32_t i = first; uint32_t idx = 0; const ReadAttributeFunc pos_func = ATTRIB_LIST.vertex_func; const GLsizei vstride = ATTRIB_LIST.vertex.stride; const ReadAttributeFunc uv_func = ATTRIB_LIST.uv_func; const GLuint uvstride = ATTRIB_LIST.uv.stride; const ReadAttributeFunc st_func = ATTRIB_LIST.st_func; const GLuint ststride = ATTRIB_LIST.st.stride; const ReadAttributeFunc diffuse_func = ATTRIB_LIST.colour_func; const GLuint dstride = ATTRIB_LIST.colour.stride; const ReadAttributeFunc normal_func = ATTRIB_LIST.normal_func; const GLuint nstride = ATTRIB_LIST.normal.stride; for(; i < first + count; ++i) { idx = IndexFunc(indices + (i * istride)); xyz = (GLubyte*) ATTRIB_LIST.vertex.ptr + (idx * vstride); uv = (GLubyte*) ATTRIB_LIST.uv.ptr + (idx * uvstride); bgra = (GLubyte*) ATTRIB_LIST.colour.ptr + (idx * dstride); st = (GLubyte*) ATTRIB_LIST.st.ptr + (idx * ststride); nxyz = (GLubyte*) ATTRIB_LIST.normal.ptr + (idx * nstride); pos_func(xyz, (GLubyte*) output); uv_func(uv, (GLubyte*) output->uv); diffuse_func(bgra, output->bgra); st_func(st, (GLubyte*) ve->st); normal_func(nxyz, (GLubyte*) ve->nxyz); output->flags = GPU_CMD_VERTEX; ++output; ++ve; } } typedef struct { float x, y, z; } Float3; typedef struct { float u, v; } Float2; static const Float3 F3Z = {0.0f, 0.0f, 1.0f}; static const Float2 F2ZERO = {0.0f, 0.0f}; static void generateElementsFastPath( SubmissionTarget* target, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type) { Vertex* start = _glSubmissionTargetStart(target); const GLuint vstride = ATTRIB_LIST.vertex.stride; const GLuint uvstride = ATTRIB_LIST.uv.stride; const GLuint ststride = ATTRIB_LIST.st.stride; const GLuint dstride = ATTRIB_LIST.colour.stride; const GLuint nstride = ATTRIB_LIST.normal.stride; const GLsizei istride = index_size(type); const IndexParseFunc IndexFunc = _calcParseIndexFunc(type); /* Copy the pos, uv and color directly in one go */ const GLubyte* pos = (ATTRIB_LIST.enabled & VERTEX_ENABLED_FLAG) ? ATTRIB_LIST.vertex.ptr : NULL; const GLubyte* uv = (ATTRIB_LIST.enabled & UV_ENABLED_FLAG) ? ATTRIB_LIST.uv.ptr : NULL; const GLubyte* col = (ATTRIB_LIST.enabled & DIFFUSE_ENABLED_FLAG) ? ATTRIB_LIST.colour.ptr : NULL; const GLubyte* st = (ATTRIB_LIST.enabled & ST_ENABLED_FLAG) ? ATTRIB_LIST.st.ptr : NULL; const GLubyte* n = (ATTRIB_LIST.enabled & NORMAL_ENABLED_FLAG) ? ATTRIB_LIST.normal.ptr : NULL; VertexExtra* ve = aligned_vector_at(target->extras, 0); Vertex* it = start; if(!pos) { return; } for(GLuint i = first; i < first + count; ++i) { GLuint idx = IndexFunc(indices + (i * istride)); it->flags = GPU_CMD_VERTEX; pos = (GLubyte*) ATTRIB_LIST.vertex.ptr + (idx * vstride); TransformVertex(((float*) pos)[0], ((float*) pos)[1], ((float*) pos)[2], 1.0f, it->xyz, &it->w); if(uv) { uv = (GLubyte*) ATTRIB_LIST.uv.ptr + (idx * uvstride); MEMCPY4(it->uv, uv, sizeof(float) * 2); } else { *((Float2*) it->uv) = F2ZERO; } if(col) { col = (GLubyte*) ATTRIB_LIST.colour.ptr + (idx * dstride); MEMCPY4(it->bgra, col, sizeof(uint32_t)); } else { *((uint32_t*) it->bgra) = ~0; } if(st) { st = (GLubyte*) ATTRIB_LIST.st.ptr + (idx * ststride); MEMCPY4(ve->st, st, sizeof(float) * 2); } else { *((Float2*) ve->st) = F2ZERO; } if(n) { n = (GLubyte*) ATTRIB_LIST.normal.ptr + (idx * nstride); MEMCPY4(ve->nxyz, n, sizeof(float) * 3); } else { *((Float3*) ve->nxyz) = F3Z; } it++; ve++; } } #define likely(x) __builtin_expect(!!(x), 1) #define POLYMODE ALL #define PROCESS_VERTEX_FLAGS(it, i) { \ (it)->flags = GPU_CMD_VERTEX; \ } #include "draw_fastpath.inc" #undef PROCESS_VERTEX_FLAGS #undef POLYMODE #define POLYMODE QUADS #define PROCESS_VERTEX_FLAGS(it, i) { \ it->flags = GPU_CMD_VERTEX; \ if(((i + 1) % 4) == 0) { \ Vertex t = *it; \ *it = *(it - 1); \ *(it - 1) = t; \ it->flags = GPU_CMD_VERTEX_EOL; \ } \ } #include "draw_fastpath.inc" #undef PROCESS_VERTEX_FLAGS #undef POLYMODE #define POLYMODE TRIS #define PROCESS_VERTEX_FLAGS(it, i) { \ it->flags = ((i + 1) % 3 == 0) ? GPU_CMD_VERTEX_EOL : GPU_CMD_VERTEX; \ } #include "draw_fastpath.inc" #undef PROCESS_VERTEX_FLAGS #undef POLYMODE static void generateArrays(SubmissionTarget* target, const GLsizei first, const GLuint count) { Vertex* start = _glSubmissionTargetStart(target); VertexExtra* ve = aligned_vector_at(target->extras, 0); _readPositionData(first, count, start); _readDiffuseData(first, count, start); _readUVData(first, count, start); _readNormalData(first, count, ve); _readSTData(first, count, ve); } static void generate(SubmissionTarget* target, const GLenum mode, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type) { /* Read from the client buffers and generate an array of ClipVertices */ TRACE(); if(ATTRIB_LIST.fast_path) { if(indices) { generateElementsFastPath(target, first, count, indices, type); } else { switch(mode) { case GL_QUADS: generateArraysFastPath_QUADS(target, first, count); return; // Don't need to do any more processing case GL_TRIANGLES: generateArraysFastPath_TRIS(target, first, count); return; // Don't need to do any more processing default: generateArraysFastPath_ALL(target, first, count); } } } else { if(indices) { generateElements(target, first, count, indices, type); } else { generateArrays(target, first, count); } } Vertex* it = _glSubmissionTargetStart(target); // Drawing arrays switch(mode) { case GL_TRIANGLES: genTriangles(it, count); break; case GL_QUADS: genQuads(it, count); break; case GL_TRIANGLE_STRIP: genTriangleStrip(it, count); break; case GL_QUAD_STRIP: genQuadStrip(it, count); break; case GL_TRIANGLE_FAN: genTriangleFan(it, count); break; case GL_POINTS: genPoints(it, count); break; case GL_LINES: genLines(it, count); break; case GL_LINE_STRIP: genLineStrip(it, count); break; case GL_LINE_LOOP: genLineLoop(it, count); break; default: gl_assert(0 && "Not Implemented"); } } GL_FORCE_INLINE int _calc_pvr_face_culling() { if(!_glIsCullingEnabled()) { return GPU_CULLING_SMALL; } else { if(_glGetCullFace() == GL_BACK) { return (_glGetFrontFace() == GL_CW) ? GPU_CULLING_CCW : GPU_CULLING_CW; } else { return (_glGetFrontFace() == GL_CCW) ? GPU_CULLING_CCW : GPU_CULLING_CW; } } } GL_FORCE_INLINE int _calc_pvr_depth_test() { if(!_glIsDepthTestEnabled()) { return GPU_DEPTHCMP_ALWAYS; } switch(_glGetDepthFunc()) { case GL_NEVER: return GPU_DEPTHCMP_NEVER; case GL_LESS: return GPU_DEPTHCMP_GREATER; case GL_EQUAL: return GPU_DEPTHCMP_EQUAL; case GL_LEQUAL: return GPU_DEPTHCMP_GEQUAL; case GL_GREATER: return GPU_DEPTHCMP_LESS; case GL_NOTEQUAL: return GPU_DEPTHCMP_NOTEQUAL; case GL_GEQUAL: return GPU_DEPTHCMP_LEQUAL; break; case GL_ALWAYS: default: return GPU_DEPTHCMP_ALWAYS; } } GL_FORCE_INLINE void apply_poly_header(PolyHeader* header, GLboolean multiTextureHeader, PolyList* activePolyList, GLshort textureUnit) { TRACE(); // Compile the header PolyContext ctx; memset(&ctx, 0, sizeof(PolyContext)); ctx.list_type = activePolyList->list_type; ctx.fmt.color = GPU_CLRFMT_ARGBPACKED; ctx.fmt.uv = GPU_UVFMT_32BIT; ctx.gen.color_clamp = GPU_CLRCLAMP_DISABLE; ctx.gen.culling = _calc_pvr_face_culling(); ctx.depth.comparison = _calc_pvr_depth_test(); ctx.depth.write = _glIsDepthWriteEnabled() ? GPU_DEPTHWRITE_ENABLE : GPU_DEPTHWRITE_DISABLE; ctx.gen.shading = (_glGetShadeModel() == GL_SMOOTH) ? GPU_SHADE_GOURAUD : GPU_SHADE_FLAT; if(_glIsScissorTestEnabled()) { ctx.gen.clip_mode = GPU_USERCLIP_INSIDE; } else { ctx.gen.clip_mode = GPU_USERCLIP_DISABLE; } if(_glIsFogEnabled()) { ctx.gen.fog_type = GPU_FOG_TABLE; } else { ctx.gen.fog_type = GPU_FOG_DISABLE; } if(_glIsBlendingEnabled() || _glIsAlphaTestEnabled()) { ctx.gen.alpha = GPU_ALPHA_ENABLE; } else { ctx.gen.alpha = GPU_ALPHA_DISABLE; } if(ctx.list_type == GPU_LIST_OP_POLY) { /* Opaque polys are always one/zero */ ctx.blend.src = GPU_BLEND_ONE; ctx.blend.dst = GPU_BLEND_ZERO; } else if(ctx.list_type == GPU_LIST_PT_POLY) { /* Punch-through polys require fixed blending and depth modes */ ctx.blend.src = GPU_BLEND_SRCALPHA; ctx.blend.dst = GPU_BLEND_INVSRCALPHA; ctx.depth.comparison = GPU_DEPTHCMP_LEQUAL; } else { ctx.blend.src = _glGetGpuBlendSrcFactor(); ctx.blend.dst = _glGetGpuBlendDstFactor(); if(ctx.list_type == GPU_LIST_TR_POLY && AUTOSORT_ENABLED) { /* Autosort mode requires this mode for transparent polys */ ctx.depth.comparison = GPU_DEPTHCMP_GEQUAL; } } _glUpdatePVRTextureContext(&ctx, textureUnit); if(multiTextureHeader) { gl_assert(ctx.list_type == GPU_LIST_TR_POLY); ctx.gen.alpha = GPU_ALPHA_ENABLE; ctx.txr.alpha = GPU_TXRALPHA_ENABLE; ctx.blend.src = GPU_BLEND_ZERO; ctx.blend.dst = GPU_BLEND_DESTCOLOR; ctx.depth.comparison = GPU_DEPTHCMP_EQUAL; } CompilePolyHeader(header, &ctx); /* Force bits 18 and 19 on to switch to 6 triangle strips */ header->cmd |= 0xC0000; /* Post-process the vertex list */ /* * This is currently unnecessary. aligned_vector memsets the allocated objects * to zero, and we don't touch oargb, also, we don't *enable* oargb yet in the * pvr header so it should be ignored anyway. If this ever becomes a problem, * uncomment this. ClipVertex* vout = output; const ClipVertex* end = output + count; while(vout < end) { vout->oargb = 0; } */ } #define DEBUG_CLIPPING 0 static AlignedVector VERTEX_EXTRAS; static SubmissionTarget SUBMISSION_TARGET; void _glInitSubmissionTarget() { SubmissionTarget* target = &SUBMISSION_TARGET; target->extras = NULL; target->count = 0; target->output = NULL; target->header_offset = target->start_offset = 0; aligned_vector_init(&VERTEX_EXTRAS, sizeof(VertexExtra)); target->extras = &VERTEX_EXTRAS; } GL_FORCE_INLINE GLuint calcFinalVertices(GLenum mode, GLuint count) { switch (mode) { case GL_POINTS: return POINTS_COUNT(count); case GL_LINE_LOOP: return LINE_LOOP_COUNT(count); case GL_LINE_STRIP: return LINE_STRIP_COUNT(count); case GL_LINES: return LINES_COUNT(count); case GL_TRIANGLE_FAN: return TRIFAN_COUNT(count); case GL_QUAD_STRIP: return QUADSTRIP_COUNT(count); } return count; } GL_FORCE_INLINE void submitVertices(GLenum mode, GLsizei first, GLuint count, GLenum type, const GLvoid* indices) { SubmissionTarget* const target = &SUBMISSION_TARGET; AlignedVector* const extras = target->extras; TRACE(); /* Do nothing if vertices aren't enabled */ if(!(ATTRIB_LIST.enabled & VERTEX_ENABLED_FLAG)) return; if(ATTRIB_LIST.dirty) _glUpdateAttributes(); /* No vertices? Do nothing */ if(!count) return; /* Polygons are treated as triangle fans, the only time this would be a * problem is if we supported glPolygonMode(..., GL_LINE) but we don't. * We optimise the triangle and quad cases. */ if(mode == GL_POLYGON) { switch(count) { case 2: mode = GL_LINES; break; case 3: mode = GL_TRIANGLES; break; case 4: mode = GL_QUADS; break; default: mode = GL_TRIANGLE_FAN; } } target->output = _glActivePolyList(); gl_assert(target->output); gl_assert(extras); uint32_t vector_size = aligned_vector_size(&target->output->vector); GLboolean header_required = (vector_size == 0) || _glGPUStateIsDirty(); target->count = calcFinalVertices(mode, count); target->header_offset = vector_size; target->start_offset = target->header_offset + (header_required ? 1 : 0); gl_assert(target->start_offset >= target->header_offset); gl_assert(target->count); /* Make sure we have enough room for all the "extra" data */ aligned_vector_resize(extras, target->count); /* Make room for the vertices and header */ aligned_vector_extend(&target->output->vector, target->count + (header_required)); if(header_required) { apply_poly_header(_glSubmissionTargetHeader(target), GL_FALSE, target->output, 0); _glGPUStateMarkClean(); } _glTnlLoadMatrix(); generate(target, mode, first, count, (GLubyte*) indices, type); _glTnlApplyEffects(target); // /* // Now, if multitexturing is enabled, we want to send exactly the same vertices again, except: // - We want to enable blending, and send them to the TR list // - We want to set the depth func to GL_EQUAL // - We want to set the second texture ID // - We want to set the uv coordinates to the passed st ones // */ // if(!TEXTURES_ENABLED[1]) { // /* Multitexture actively disabled */ // return; // } // TextureObject* texture1 = _glGetTexture1(); // /* Multitexture implicitly disabled */ // if(!texture1 || ((ATTRIB_LIST.enabled & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) { // /* Multitexture actively disabled */ // return; // } // /* Push back a copy of the list to the transparent poly list, including the header // (hence the + 1) // */ // Vertex* vertex = aligned_vector_push_back( // &_glTransparentPolyList()->vector, (Vertex*) _glSubmissionTargetHeader(target), target->count + 1 // ); // gl_assert(vertex); // PolyHeader* mtHeader = (PolyHeader*) vertex++; // /* Send the buffer again to the transparent list */ // apply_poly_header(mtHeader, GL_TRUE, _glTransparentPolyList(), 1); // /* Replace the UV coordinates with the ST ones */ // VertexExtra* ve = aligned_vector_at(target->extras, 0); // ITERATE(target->count) { // vertex->uv[0] = ve->st[0]; // vertex->uv[1] = ve->st[1]; // ++vertex; // ++ve; // } } void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) { TRACE(); if(_glCheckImmediateModeInactive(__func__)) { return; } submitVertices(mode, 0, count, type, indices); } void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) { TRACE(); if(_glCheckImmediateModeInactive(__func__)) { return; } submitVertices(mode, first, count, GL_UNSIGNED_INT, NULL); } GLuint _glGetActiveClientTexture() { return ACTIVE_CLIENT_TEXTURE; } void APIENTRY glClientActiveTextureARB(GLenum texture) { TRACE(); if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_GLDC_TEXTURE_UNITS) { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0; }