#include #include #include #include #include #include #include "private.h" #include "platform.h" AttribPointerList ATTRIB_LIST; static const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; GL_FORCE_INLINE GLsizei byte_size(GLenum type) { switch(type) { case GL_BYTE: return sizeof(GLbyte); case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_SHORT: return sizeof(GLshort); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_INT: return sizeof(GLint); case GL_UNSIGNED_INT: return sizeof(GLuint); case GL_DOUBLE: return sizeof(GLdouble); case GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GLuint); case GL_FLOAT: default: return sizeof(GLfloat); } } // Used to avoid checking and updating attribute related state unless necessary GL_FORCE_INLINE GLboolean _glStateUnchanged(AttribPointer* p, GLint size, GLenum type, GLsizei stride) { return (p->size == size && p->type == type && p->stride == stride); } GLuint* _glGetEnabledAttributes(void) { return &ATTRIB_LIST.enabled; } static void _readPosition3f3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) { const float* input = (const float*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = input[2]; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition3d3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) { const double* input = (const double*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = input[2]; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition3ub3f(const GLubyte* input, GLubyte* out) { Vertex* it = (Vertex*)out; float x = input[0] * ONE_OVER_TWO_FIVE_FIVE; float y = input[1] * ONE_OVER_TWO_FIVE_FIVE; float z = input[2] * ONE_OVER_TWO_FIVE_FIVE; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition3us3f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = input[2]; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition3ui3f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = input[2]; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition2f3f(const GLubyte* in, GLubyte* out) { const float* input = (const float*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = 0.0f; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition2d3f(const GLubyte* in, GLubyte* out) { const double* input = (const double*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = 0.0f; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition2ub3f(const GLubyte* input, GLubyte* out) { Vertex* it = (Vertex*) out; float x = input[0] * ONE_OVER_TWO_FIVE_FIVE; float y = input[1] * ONE_OVER_TWO_FIVE_FIVE; float z = 0.0f; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition2us3f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; Vertex* it = (Vertex*) out; float x = input[0]; float y = input[1]; float z = 0.0f; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static void _readPosition2ui3f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; Vertex* it = (Vertex*)out; float x = input[0]; float y = input[1]; float z = 0.0f; float w = 1.0f; TransformVertex(x, y, z, w, it->xyz, &it->w); } static ReadAttributeFunc calcReadPositionFunc(void) { switch(ATTRIB_LIST.vertex.type) { case GL_DOUBLE: return (ATTRIB_LIST.vertex.size == 3) ? _readPosition3d3f: _readPosition2d3f; default: case GL_FLOAT: return (ATTRIB_LIST.vertex.size == 3) ? _readPosition3f3f: _readPosition2f3f; case GL_BYTE: case GL_UNSIGNED_BYTE: return (ATTRIB_LIST.vertex.size == 3) ? _readPosition3ub3f: _readPosition2ub3f; case GL_SHORT: case GL_UNSIGNED_SHORT: return (ATTRIB_LIST.vertex.size == 3) ? _readPosition3us3f: _readPosition2us3f; case GL_INT: case GL_UNSIGNED_INT: return (ATTRIB_LIST.vertex.size == 3) ? _readPosition3ui3f: _readPosition2ui3f; } } static void _fillWhiteARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) { _GL_UNUSED(input); *((uint32_t*) output) = ~0; } static void _readColour4ubARGB(const GLubyte* input, GLubyte* output) { output[R8IDX] = input[0]; output[G8IDX] = input[1]; output[B8IDX] = input[2]; output[A8IDX] = input[3]; } static void _readColour3ubARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) { output[R8IDX] = input[0]; output[G8IDX] = input[1]; output[B8IDX] = input[2]; output[A8IDX] = 255; } #define DEF_READ_COLOUR_4_ARGB_FP(prefix, intype) \ static void _readColour##prefix##ARGB(const GLubyte* __restrict in, GLubyte* __restrict out) { \ const intype* input = (const intype*) in; \ out[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); \ out[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); \ out[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); \ out[A8IDX] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); \ } #define DEF_READ_COLOUR_3_ARGB_FP(prefix, intype) \ static void _readColour##prefix##ARGB(const GLubyte* __restrict in, GLubyte* __restrict out) { \ const intype* input = (const intype*) in; \ out[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); \ out[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); \ out[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); \ out[A8IDX] = 255; \ } DEF_READ_COLOUR_4_ARGB_FP(4f, float) DEF_READ_COLOUR_4_ARGB_FP(4d, double) DEF_READ_COLOUR_3_ARGB_FP(3f, float) DEF_READ_COLOUR_3_ARGB_FP(3d, double) static void _readColour4ubRevARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) { argbcpy(output, input); } static void _readColour4fRevARGB(const GLubyte* __restrict__ in, GLubyte* __restrict__ output) { const float* input = (const float*) in; output[0] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[1] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[2] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[3] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); } static void _readColour4dRevARGB(const GLubyte* __restrict__ in, GLubyte* __restrict__ output) { const double* input = (const double*) in; output[0] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[1] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[2] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[3] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); } #define DEF_READ_COLOUR_N_ARGB_INT(prefix, intype, max, alpha, i0, i1, i2, i3) \ static void _readColour##prefix##ARGB(const GLubyte* __restrict in, GLubyte* __restrict out) { \ const intype* input = (const intype*) in; \ out[i0] = (GLubyte) clamp((float)input[0] / (float)max * 255.0f, 0, 255); \ out[i1] = (GLubyte) clamp((float)input[1] / (float)max * 255.0f, 0, 255); \ out[i2] = (GLubyte) clamp((float)input[2] / (float)max * 255.0f, 0, 255); \ out[i3] = alpha; \ } #define DEF_READ_COLOUR_3_ARGB_INT(prefix, intype, max) \ DEF_READ_COLOUR_N_ARGB_INT(prefix, intype, max, 255, R8IDX, G8IDX, B8IDX, A8IDX) #define DEF_READ_COLOUR_4_ARGB_INT(prefix, intype, max) \ DEF_READ_COLOUR_N_ARGB_INT(prefix, intype, max, \ ((GLubyte)clamp((float)input[2] / (float)max * 255.0f, 0, 255)), \ R8IDX, G8IDX, B8IDX, A8IDX) #define DEF_READ_COLOUR_4_REV_ARGB_INT(prefix, intype, max) \ DEF_READ_COLOUR_N_ARGB_INT(prefix##Rev, intype, max, \ ((GLubyte)clamp((float)input[2] / (float)max * 255.0f, 0, 255)), \ 0, 1, 2, 3) DEF_READ_COLOUR_3_ARGB_INT(3us, GLushort, UINT16_MAX) DEF_READ_COLOUR_3_ARGB_INT(3ui, GLuint, UINT32_MAX) DEF_READ_COLOUR_4_ARGB_INT(4us, GLushort, UINT16_MAX) DEF_READ_COLOUR_4_ARGB_INT(4ui, GLuint, UINT32_MAX) DEF_READ_COLOUR_4_REV_ARGB_INT(4us, GLushort, UINT16_MAX) DEF_READ_COLOUR_4_REV_ARGB_INT(4ui, GLuint, UINT32_MAX) static ReadAttributeFunc calcReadDiffuseFunc(void) { if((ATTRIB_LIST.enabled & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) { /* Just fill the whole thing white if the attribute is disabled */ return _fillWhiteARGB; } switch(ATTRIB_LIST.colour.type) { case GL_DOUBLE: return (ATTRIB_LIST.colour.size == 3) ? _readColour3dARGB: (ATTRIB_LIST.colour.size == 4) ? _readColour4dARGB: _readColour4dRevARGB; default: case GL_FLOAT: return (ATTRIB_LIST.colour.size == 3) ? _readColour3fARGB: (ATTRIB_LIST.colour.size == 4) ? _readColour4fARGB: _readColour4fRevARGB; case GL_BYTE: case GL_UNSIGNED_BYTE: return (ATTRIB_LIST.colour.size == 3) ? _readColour3ubARGB: (ATTRIB_LIST.colour.size == 4) ? _readColour4ubARGB: _readColour4ubRevARGB; case GL_SHORT: case GL_UNSIGNED_SHORT: return (ATTRIB_LIST.colour.size == 3) ? _readColour3usARGB: (ATTRIB_LIST.colour.size == 4) ? _readColour4usARGB: _readColour4usRevARGB; case GL_INT: case GL_UNSIGNED_INT: return (ATTRIB_LIST.colour.size == 3) ? _readColour3uiARGB: (ATTRIB_LIST.colour.size == 4) ? _readColour4uiARGB: _readColour4uiRevARGB; } } static void _fillZero2f(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) { _GL_UNUSED(input); //memset(out, 0, sizeof(float) * 2); // memset does 8 byte writes - faster to manually write as uint32 uint32_t* dst = (uint32_t*)out; dst[0] = 0; dst[1] = 0; } static void _readTexcoord2f2f(const GLubyte* in, GLubyte* out) { vec2cpy(out, in); } static void _readTexcoord2d2f(const GLubyte* in, GLubyte* out) { ((float*)out)[0] = ((const double*)in)[0]; ((float*)out)[1] = ((const double*)in)[1]; } static void _readTexcoord2ub2f(const GLubyte* input, GLubyte* out) { float* output = (float*) out; output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; } static void _readTexcoord2us2f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; float* output = (float*) out; output[0] = (float)input[0] / SHRT_MAX; output[1] = (float)input[1] / SHRT_MAX; } static void _readTexcoord2ui2f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; } static ReadAttributeFunc calcReadUVFunc(void) { if((ATTRIB_LIST.enabled & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) { return _fillZero2f; } switch(ATTRIB_LIST.uv.type) { case GL_DOUBLE: return _readTexcoord2d2f; default: case GL_FLOAT: return _readTexcoord2f2f; case GL_BYTE: case GL_UNSIGNED_BYTE: return _readTexcoord2ub2f; case GL_SHORT: case GL_UNSIGNED_SHORT: return _readTexcoord2us2f; case GL_INT: case GL_UNSIGNED_INT: return _readTexcoord2ui2f; } } static ReadAttributeFunc calcReadSTFunc(void) { if((ATTRIB_LIST.enabled & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) { return _fillZero2f; } switch(ATTRIB_LIST.st.type) { case GL_DOUBLE: return _readTexcoord2d2f; default: case GL_FLOAT: return _readTexcoord2f2f; case GL_BYTE: case GL_UNSIGNED_BYTE: return _readTexcoord2ub2f; case GL_SHORT: case GL_UNSIGNED_SHORT: return _readTexcoord2us2f; case GL_INT: case GL_UNSIGNED_INT: return _readTexcoord2ui2f; } } static void _fillWithNegZVE(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) { _GL_UNUSED(input); typedef struct { float x, y, z; } V; static const V NegZ = {0.0f, 0.0f, -1.0f}; *((V*) out) = NegZ; } static void _readNormal3f3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) { vec3cpy(out, in); } static void _readNormal3d3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) { ((float*)out)[0] = ((const double*)in)[0]; ((float*)out)[1] = ((const double*)in)[1]; ((float*)out)[2] = ((const double*)in)[2]; } static void _readNormal3ub3f(const GLubyte* input, GLubyte* out) { float* output = (float*) out; output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE; } static void _readNormal3us3f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; } static void _readNormal3ui3f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; } // 10:10:10:2REV format static void _readNormal1i3f(const GLubyte* in, GLubyte* out) { static const float MULTIPLIER = 1.0f / 1023.0f; GLfloat* output = (GLfloat*) out; union { int value; struct { signed int x: 10; signed int y: 10; signed int z: 10; signed int w: 2; } bits; } input; input.value = *((const GLint*) in); output[0] = (2.0f * (float) input.bits.x + 1.0f) * MULTIPLIER; output[1] = (2.0f * (float) input.bits.y + 1.0f) * MULTIPLIER; output[2] = (2.0f * (float) input.bits.z + 1.0f) * MULTIPLIER; } static ReadAttributeFunc calcReadNormalFunc(void) { if((ATTRIB_LIST.enabled & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) { return _fillWithNegZVE; } switch(ATTRIB_LIST.normal.type) { case GL_DOUBLE: return _readNormal3d3f; case GL_FLOAT: default: return _readNormal3f3f; break; case GL_BYTE: case GL_UNSIGNED_BYTE: return _readNormal3ub3f; break; case GL_SHORT: case GL_UNSIGNED_SHORT: return _readNormal3us3f; break; case GL_INT: case GL_UNSIGNED_INT: return _readNormal3ui3f; break; case GL_UNSIGNED_INT_2_10_10_10_REV: return _readNormal1i3f; break; } } void APIENTRY glEnableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ATTRIB_LIST.enabled |= VERTEX_ENABLED_FLAG; ATTRIB_LIST.dirty |= VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ATTRIB_LIST.enabled |= DIFFUSE_ENABLED_FLAG; ATTRIB_LIST.dirty |= DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ATTRIB_LIST.enabled |= NORMAL_ENABLED_FLAG; ATTRIB_LIST.dirty |= NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ATTRIB_LIST.enabled |= ST_ENABLED_FLAG): (ATTRIB_LIST.enabled |= UV_ENABLED_FLAG); (ACTIVE_CLIENT_TEXTURE) ? (ATTRIB_LIST.dirty |= ST_ENABLED_FLAG): (ATTRIB_LIST.dirty |= UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } } void APIENTRY glDisableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ATTRIB_LIST.enabled &= ~VERTEX_ENABLED_FLAG; ATTRIB_LIST.dirty |= VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ATTRIB_LIST.enabled &= ~DIFFUSE_ENABLED_FLAG; ATTRIB_LIST.dirty |= DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ATTRIB_LIST.enabled &= ~NORMAL_ENABLED_FLAG; ATTRIB_LIST.dirty |= NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ATTRIB_LIST.enabled &= ~ST_ENABLED_FLAG): (ATTRIB_LIST.enabled &= ~UV_ENABLED_FLAG); (ACTIVE_CLIENT_TEXTURE) ? (ATTRIB_LIST.dirty |= ST_ENABLED_FLAG): (ATTRIB_LIST.dirty |= UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } } void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *pointer) { TRACE(); stride = (stride) ? stride : size * byte_size(type); AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &ATTRIB_LIST.uv : &ATTRIB_LIST.st; tointer->ptr = pointer; if(_glStateUnchanged(tointer, size, type, stride)) return; if(size < 1 || size > 4) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } tointer->stride = stride; tointer->type = type; tointer->size = size; (ACTIVE_CLIENT_TEXTURE) ? (ATTRIB_LIST.dirty |= ST_ENABLED_FLAG): (ATTRIB_LIST.dirty |= UV_ENABLED_FLAG); } void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); stride = (stride) ? stride : (size * byte_size(type)); ATTRIB_LIST.vertex.ptr = pointer; if(_glStateUnchanged(&ATTRIB_LIST.vertex, size, type, stride)) return; if(size < 2 || size > 4) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } ATTRIB_LIST.vertex.stride = stride; ATTRIB_LIST.vertex.type = type; ATTRIB_LIST.vertex.size = size; ATTRIB_LIST.dirty |= VERTEX_ENABLED_FLAG; } void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); stride = (stride) ? stride : ((size == GL_BGRA) ? 4 : size) * byte_size(type); ATTRIB_LIST.colour.ptr = pointer; if(_glStateUnchanged(&ATTRIB_LIST.colour, size, type, stride)) return; if(size != 3 && size != 4 && size != GL_BGRA) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } ATTRIB_LIST.colour.type = type; ATTRIB_LIST.colour.size = size; ATTRIB_LIST.colour.stride = stride; ATTRIB_LIST.dirty |= DIFFUSE_ENABLED_FLAG; } void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); GLint validTypes[] = { GL_DOUBLE, GL_FLOAT, GL_BYTE, GL_UNSIGNED_BYTE, GL_INT, GL_UNSIGNED_INT, GL_UNSIGNED_INT_2_10_10_10_REV, 0 }; stride = (stride) ? stride : ATTRIB_LIST.normal.size * byte_size(type); ATTRIB_LIST.normal.ptr = pointer; if(_glStateUnchanged(&ATTRIB_LIST.normal, 3, type, stride)) return; if(_glCheckValidEnum(type, validTypes, __func__) != 0) { return; } ATTRIB_LIST.normal.size = (type == GL_UNSIGNED_INT_2_10_10_10_REV) ? 1 : 3; ATTRIB_LIST.normal.stride = stride; ATTRIB_LIST.normal.type = type; ATTRIB_LIST.dirty |= NORMAL_ENABLED_FLAG; } void _glInitAttributePointers(void) { TRACE(); ATTRIB_LIST.dirty = ~0; // all attributes dirty glVertexPointer(3, GL_FLOAT, 0, NULL); glTexCoordPointer(2, GL_FLOAT, 0, NULL); glColorPointer(4, GL_FLOAT, 0, NULL); glNormalPointer(GL_FLOAT, 0, NULL); } GL_FORCE_INLINE GLuint _glIsVertexDataFastPathCompatible(void) { /* The fast path is enabled when all enabled elements of the vertex * match the output format. This means: * * xyz == 3f * uv == 2f * rgba == argb4444 * st == 2f * normal == 3f * * When this happens we do inline straight copies of the enabled data * and transforms for positions and normals happen while copying. */ if((ATTRIB_LIST.enabled & VERTEX_ENABLED_FLAG)) { if(ATTRIB_LIST.vertex.size != 3 || ATTRIB_LIST.vertex.type != GL_FLOAT) { return GL_FALSE; } } if((ATTRIB_LIST.enabled & UV_ENABLED_FLAG)) { if(ATTRIB_LIST.uv.size != 2 || ATTRIB_LIST.uv.type != GL_FLOAT) { return GL_FALSE; } } if((ATTRIB_LIST.enabled & DIFFUSE_ENABLED_FLAG)) { /* FIXME: Shouldn't this be a reversed format? */ if(ATTRIB_LIST.colour.size != GL_BGRA || ATTRIB_LIST.colour.type != GL_UNSIGNED_BYTE) { return GL_FALSE; } } if((ATTRIB_LIST.enabled & ST_ENABLED_FLAG)) { if(ATTRIB_LIST.st.size != 2 || ATTRIB_LIST.st.type != GL_FLOAT) { return GL_FALSE; } } if((ATTRIB_LIST.enabled & NORMAL_ENABLED_FLAG)) { if(ATTRIB_LIST.normal.size != 3 || ATTRIB_LIST.normal.type != GL_FLOAT) { return GL_FALSE; } } return GL_TRUE; } void _glUpdateAttributes(void) { if(ATTRIB_LIST.dirty & VERTEX_ENABLED_FLAG) { ATTRIB_LIST.vertex_func = calcReadPositionFunc(); } if(ATTRIB_LIST.dirty & UV_ENABLED_FLAG) { ATTRIB_LIST.uv_func = calcReadUVFunc(); } if(ATTRIB_LIST.dirty & DIFFUSE_ENABLED_FLAG) { ATTRIB_LIST.colour_func = calcReadDiffuseFunc(); } if(ATTRIB_LIST.dirty & ST_ENABLED_FLAG) { ATTRIB_LIST.st_func = calcReadSTFunc(); } if(ATTRIB_LIST.dirty & NORMAL_ENABLED_FLAG) { ATTRIB_LIST.normal_func = calcReadNormalFunc(); } ATTRIB_LIST.fast_path = _glIsVertexDataFastPathCompatible(); ATTRIB_LIST.dirty = 0; }