GLdc/GL/attributes.c
2025-02-01 18:17:28 +11:00

621 lines
18 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include "private.h"
#include "platform.h"
AttribPointerList ATTRIB_LIST;
static const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f;
GL_FORCE_INLINE GLsizei byte_size(GLenum type) {
switch(type) {
case GL_BYTE: return sizeof(GLbyte);
case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
case GL_SHORT: return sizeof(GLshort);
case GL_UNSIGNED_SHORT: return sizeof(GLushort);
case GL_INT: return sizeof(GLint);
case GL_UNSIGNED_INT: return sizeof(GLuint);
case GL_DOUBLE: return sizeof(GLdouble);
case GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GLuint);
case GL_FLOAT:
default: return sizeof(GLfloat);
}
}
// Used to avoid checking and updating attribute related state unless necessary
GL_FORCE_INLINE GLboolean _glStateUnchanged(AttribPointer* p, GLint size, GLenum type, GLsizei stride) {
return (p->size == size && p->type == type && p->stride == stride);
}
GLuint* _glGetEnabledAttributes() {
return &ATTRIB_LIST.enabled;
}
static void _readVertexData3f3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) {
vec3cpy(out, in);
}
// 10:10:10:2REV format
static void _readVertexData1i3f(const GLubyte* in, GLubyte* out) {
static const float MULTIPLIER = 1.0f / 1023.0f;
GLfloat* output = (GLfloat*) out;
union {
int value;
struct {
signed int x: 10;
signed int y: 10;
signed int z: 10;
signed int w: 2;
} bits;
} input;
input.value = *((const GLint*) in);
output[0] = (2.0f * (float) input.bits.x + 1.0f) * MULTIPLIER;
output[1] = (2.0f * (float) input.bits.y + 1.0f) * MULTIPLIER;
output[2] = (2.0f * (float) input.bits.z + 1.0f) * MULTIPLIER;
}
static void _readVertexData3us3f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
}
static void _readVertexData3ui3f(const GLubyte* in, GLubyte* out) {
const GLuint* input = (const GLuint*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
}
static void _readVertexData3ub3f(const GLubyte* input, GLubyte* out) {
float* output = (float*) out;
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE;
}
static void _readVertexData2f2f(const GLubyte* in, GLubyte* out) {
vec2cpy(out, in);
}
static void _readVertexData2f3f(const GLubyte* in, GLubyte* out) {
const float* input = (const float*) in;
float* output = (float*) out;
vec2cpy(output, input);
output[2] = 0.0f;
}
static void _readVertexData2ub3f(const GLubyte* input, GLubyte* out) {
float* output = (float*) out;
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
output[2] = 0.0f;
}
static void _readVertexData2us3f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
}
static void _readVertexData2us2f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = (float)input[0] / SHRT_MAX;
output[1] = (float)input[1] / SHRT_MAX;
}
static void _readVertexData2ui2f(const GLubyte* in, GLubyte* out) {
const GLuint* input = (const GLuint*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
}
static void _readVertexData2ub2f(const GLubyte* input, GLubyte* out) {
float* output = (float*) out;
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
}
static void _readVertexData2ui3f(const GLubyte* in, GLubyte* out) {
const GLuint* input = (const GLuint*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
}
static void _readVertexData4ubARGB(const GLubyte* input, GLubyte* output) {
output[R8IDX] = input[0];
output[G8IDX] = input[1];
output[B8IDX] = input[2];
output[A8IDX] = input[3];
}
static void _readVertexData4fARGB(const GLubyte* in, GLubyte* output) {
const float* input = (const float*) in;
output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255);
output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255);
output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255);
output[A8IDX] = (GLubyte) clamp(input[3] * 255.0f, 0, 255);
}
static void _readVertexData3fARGB(const GLubyte* in, GLubyte* output) {
const float* input = (const float*) in;
output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255);
output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255);
output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255);
output[A8IDX] = 255;
}
static void _readVertexData3ubARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) {
output[R8IDX] = input[0];
output[G8IDX] = input[1];
output[B8IDX] = input[2];
output[A8IDX] = 255;
}
static void _readVertexData4ubRevARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) {
argbcpy(output, input);
}
static void _readVertexData4fRevARGB(const GLubyte* __restrict__ in, GLubyte* __restrict__ output) {
const float* input = (const float*) in;
output[0] = (GLubyte) clamp(input[0] * 255.0f, 0, 255);
output[1] = (GLubyte) clamp(input[1] * 255.0f, 0, 255);
output[2] = (GLubyte) clamp(input[2] * 255.0f, 0, 255);
output[3] = (GLubyte) clamp(input[3] * 255.0f, 0, 255);
}
static void _fillWithNegZVE(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) {
_GL_UNUSED(input);
typedef struct { float x, y, z; } V;
static const V NegZ = {0.0f, 0.0f, -1.0f};
*((V*) out) = NegZ;
}
static void _fillWhiteARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) {
_GL_UNUSED(input);
*((uint32_t*) output) = ~0;
}
static void _fillZero2f(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) {
_GL_UNUSED(input);
//memset(out, 0, sizeof(float) * 2);
// memset does 8 byte writes - faster to manually write as uint32
uint32_t* dst = (uint32_t*)out;
dst[0] = 0;
dst[1] = 0;
}
static void _readVertexData3usARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData3uiARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4usARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4uiARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4usRevARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4uiRevARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static ReadAttributeFunc calcReadDiffuseFunc() {
if((ATTRIB_LIST.enabled & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) {
/* Just fill the whole thing white if the attribute is disabled */
return _fillWhiteARGB;
}
switch(ATTRIB_LIST.colour.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return (ATTRIB_LIST.colour.size == 3) ? _readVertexData3fARGB:
(ATTRIB_LIST.colour.size == 4) ? _readVertexData4fARGB:
_readVertexData4fRevARGB;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return (ATTRIB_LIST.colour.size == 3) ? _readVertexData3ubARGB:
(ATTRIB_LIST.colour.size == 4) ? _readVertexData4ubARGB:
_readVertexData4ubRevARGB;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return (ATTRIB_LIST.colour.size == 3) ? _readVertexData3usARGB:
(ATTRIB_LIST.colour.size == 4) ? _readVertexData4usARGB:
_readVertexData4usRevARGB;
case GL_INT:
case GL_UNSIGNED_INT:
return (ATTRIB_LIST.colour.size == 3) ? _readVertexData3uiARGB:
(ATTRIB_LIST.colour.size == 4) ? _readVertexData4uiARGB:
_readVertexData4uiRevARGB;
}
}
static ReadAttributeFunc calcReadPositionFunc() {
switch(ATTRIB_LIST.vertex.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return (ATTRIB_LIST.vertex.size == 3) ? _readVertexData3f3f:
_readVertexData2f3f;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return (ATTRIB_LIST.vertex.size == 3) ? _readVertexData3ub3f:
_readVertexData2ub3f;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return (ATTRIB_LIST.vertex.size == 3) ? _readVertexData3us3f:
_readVertexData2us3f;
case GL_INT:
case GL_UNSIGNED_INT:
return (ATTRIB_LIST.vertex.size == 3) ? _readVertexData3ui3f:
_readVertexData2ui3f;
}
}
static ReadAttributeFunc calcReadUVFunc() {
if((ATTRIB_LIST.enabled & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) {
return _fillZero2f;
}
switch(ATTRIB_LIST.uv.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return _readVertexData2f2f;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _readVertexData2ub2f;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return _readVertexData2us2f;
case GL_INT:
case GL_UNSIGNED_INT:
return _readVertexData2ui2f;
}
}
static ReadAttributeFunc calcReadSTFunc() {
if((ATTRIB_LIST.enabled & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) {
return _fillZero2f;
}
switch(ATTRIB_LIST.st.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return _readVertexData2f2f;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _readVertexData2ub2f;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return _readVertexData2us2f;
case GL_INT:
case GL_UNSIGNED_INT:
return _readVertexData2ui2f;
}
}
static ReadAttributeFunc calcReadNormalFunc() {
if((ATTRIB_LIST.enabled & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) {
return _fillWithNegZVE;
}
switch(ATTRIB_LIST.normal.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return _readVertexData3f3f;
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _readVertexData3ub3f;
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return _readVertexData3us3f;
break;
case GL_INT:
case GL_UNSIGNED_INT:
return _readVertexData3ui3f;
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
return _readVertexData1i3f;
break;
}
}
void APIENTRY glEnableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ATTRIB_LIST.enabled |= VERTEX_ENABLED_FLAG;
ATTRIB_LIST.dirty |= VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ATTRIB_LIST.enabled |= DIFFUSE_ENABLED_FLAG;
ATTRIB_LIST.dirty |= DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ATTRIB_LIST.enabled |= NORMAL_ENABLED_FLAG;
ATTRIB_LIST.dirty |= NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ATTRIB_LIST.enabled |= ST_ENABLED_FLAG):
(ATTRIB_LIST.enabled |= UV_ENABLED_FLAG);
(ACTIVE_CLIENT_TEXTURE) ?
(ATTRIB_LIST.dirty |= ST_ENABLED_FLAG):
(ATTRIB_LIST.dirty |= UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
}
void APIENTRY glDisableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ATTRIB_LIST.enabled &= ~VERTEX_ENABLED_FLAG;
ATTRIB_LIST.dirty |= VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ATTRIB_LIST.enabled &= ~DIFFUSE_ENABLED_FLAG;
ATTRIB_LIST.dirty |= DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ATTRIB_LIST.enabled &= ~NORMAL_ENABLED_FLAG;
ATTRIB_LIST.dirty |= NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ATTRIB_LIST.enabled &= ~ST_ENABLED_FLAG):
(ATTRIB_LIST.enabled &= ~UV_ENABLED_FLAG);
(ACTIVE_CLIENT_TEXTURE) ?
(ATTRIB_LIST.dirty |= ST_ENABLED_FLAG):
(ATTRIB_LIST.dirty |= UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
}
void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
stride = (stride) ? stride : size * byte_size(type);
AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &ATTRIB_LIST.uv : &ATTRIB_LIST.st;
tointer->ptr = pointer;
if(_glStateUnchanged(tointer, size, type, stride)) return;
if(size < 1 || size > 4) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
return;
}
tointer->stride = stride;
tointer->type = type;
tointer->size = size;
(ACTIVE_CLIENT_TEXTURE) ?
(ATTRIB_LIST.dirty |= ST_ENABLED_FLAG):
(ATTRIB_LIST.dirty |= UV_ENABLED_FLAG);
}
void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
stride = (stride) ? stride : (size * byte_size(type));
ATTRIB_LIST.vertex.ptr = pointer;
if(_glStateUnchanged(&ATTRIB_LIST.vertex, size, type, stride)) return;
if(size < 2 || size > 4) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
return;
}
ATTRIB_LIST.vertex.stride = stride;
ATTRIB_LIST.vertex.type = type;
ATTRIB_LIST.vertex.size = size;
ATTRIB_LIST.dirty |= VERTEX_ENABLED_FLAG;
}
void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
stride = (stride) ? stride : ((size == GL_BGRA) ? 4 : size) * byte_size(type);
ATTRIB_LIST.colour.ptr = pointer;
if(_glStateUnchanged(&ATTRIB_LIST.colour, size, type, stride)) return;
if(size != 3 && size != 4 && size != GL_BGRA) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
return;
}
ATTRIB_LIST.colour.type = type;
ATTRIB_LIST.colour.size = size;
ATTRIB_LIST.colour.stride = stride;
ATTRIB_LIST.dirty |= DIFFUSE_ENABLED_FLAG;
}
void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
GLint validTypes[] = {
GL_DOUBLE,
GL_FLOAT,
GL_BYTE,
GL_UNSIGNED_BYTE,
GL_INT,
GL_UNSIGNED_INT,
GL_UNSIGNED_INT_2_10_10_10_REV,
0
};
stride = (stride) ? stride : ATTRIB_LIST.normal.size * byte_size(type);
ATTRIB_LIST.normal.ptr = pointer;
if(_glStateUnchanged(&ATTRIB_LIST.normal, 3, type, stride)) return;
if(_glCheckValidEnum(type, validTypes, __func__) != 0) {
return;
}
ATTRIB_LIST.normal.size = (type == GL_UNSIGNED_INT_2_10_10_10_REV) ? 1 : 3;
ATTRIB_LIST.normal.stride = stride;
ATTRIB_LIST.normal.type = type;
ATTRIB_LIST.dirty |= NORMAL_ENABLED_FLAG;
}
void _glInitAttributePointers() {
TRACE();
ATTRIB_LIST.dirty = ~0; // all attributes dirty
glVertexPointer(3, GL_FLOAT, 0, NULL);
glTexCoordPointer(2, GL_FLOAT, 0, NULL);
glColorPointer(4, GL_FLOAT, 0, NULL);
glNormalPointer(GL_FLOAT, 0, NULL);
}
GL_FORCE_INLINE GLuint _glIsVertexDataFastPathCompatible() {
/* The fast path is enabled when all enabled elements of the vertex
* match the output format. This means:
*
* xyz == 3f
* uv == 2f
* rgba == argb4444
* st == 2f
* normal == 3f
*
* When this happens we do inline straight copies of the enabled data
* and transforms for positions and normals happen while copying.
*/
if((ATTRIB_LIST.enabled & VERTEX_ENABLED_FLAG)) {
if(ATTRIB_LIST.vertex.size != 3 || ATTRIB_LIST.vertex.type != GL_FLOAT) {
return GL_FALSE;
}
}
if((ATTRIB_LIST.enabled & UV_ENABLED_FLAG)) {
if(ATTRIB_LIST.uv.size != 2 || ATTRIB_LIST.uv.type != GL_FLOAT) {
return GL_FALSE;
}
}
if((ATTRIB_LIST.enabled & DIFFUSE_ENABLED_FLAG)) {
/* FIXME: Shouldn't this be a reversed format? */
if(ATTRIB_LIST.colour.size != GL_BGRA || ATTRIB_LIST.colour.type != GL_UNSIGNED_BYTE) {
return GL_FALSE;
}
}
if((ATTRIB_LIST.enabled & ST_ENABLED_FLAG)) {
if(ATTRIB_LIST.st.size != 2 || ATTRIB_LIST.st.type != GL_FLOAT) {
return GL_FALSE;
}
}
if((ATTRIB_LIST.enabled & NORMAL_ENABLED_FLAG)) {
if(ATTRIB_LIST.normal.size != 3 || ATTRIB_LIST.normal.type != GL_FLOAT) {
return GL_FALSE;
}
}
return GL_TRUE;
}
void _glUpdateAttributes() {
if(ATTRIB_LIST.dirty & VERTEX_ENABLED_FLAG) {
ATTRIB_LIST.vertex_func = calcReadPositionFunc();
}
if(ATTRIB_LIST.dirty & UV_ENABLED_FLAG) {
ATTRIB_LIST.uv_func = calcReadUVFunc();
}
if(ATTRIB_LIST.dirty & DIFFUSE_ENABLED_FLAG) {
ATTRIB_LIST.colour_func = calcReadDiffuseFunc();
}
if(ATTRIB_LIST.dirty & ST_ENABLED_FLAG) {
ATTRIB_LIST.st_func = calcReadSTFunc();
}
if(ATTRIB_LIST.dirty & NORMAL_ENABLED_FLAG) {
ATTRIB_LIST.normal_func = calcReadNormalFunc();
}
ATTRIB_LIST.fast_path = _glIsVertexDataFastPathCompatible();
ATTRIB_LIST.dirty = 0;
}