GLdc/GL/platforms/sh4.c
2023-04-20 20:45:59 +01:00

396 lines
14 KiB
C

#include "../platform.h"
#include "sh4.h"
#define CLIP_DEBUG 0
#define PVR_VERTEX_BUF_SIZE 2560 * 256
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define SQ_BASE_ADDRESS (uint32_t *)(void *) \
(0xe0000000 | (((uint32_t)0x10000000) & 0x03ffffe0))
static volatile uint32_t* PVR_LMMODE0 = (uint32_t*) 0xA05F6884;
GL_FORCE_INLINE bool glIsVertex(const float flags) {
return flags == GPU_CMD_VERTEX_EOL || flags == GPU_CMD_VERTEX;
}
GL_FORCE_INLINE bool glIsLastVertex(const float flags) {
return flags == GPU_CMD_VERTEX_EOL;
}
void InitGPU(_Bool autosort, _Bool fsaa) {
pvr_init_params_t params = {
/* Enable opaque and translucent polygons with size 32 and 32 */
{PVR_BINSIZE_32, PVR_BINSIZE_0, PVR_BINSIZE_32, PVR_BINSIZE_0, PVR_BINSIZE_32},
PVR_VERTEX_BUF_SIZE, /* Vertex buffer size */
0, /* No DMA */
fsaa, /* No FSAA */
(autosort) ? 0 : 1 /* Disable translucent auto-sorting to match traditional GL */
};
pvr_init(&params);
}
void SceneBegin() {
pvr_wait_ready();
pvr_scene_begin();
}
void SceneListBegin(GPUList list) {
pvr_list_begin(list);
}
GL_FORCE_INLINE float _glFastInvert(float x) {
return (1.f / __builtin_sqrtf(x * x));
}
GL_FORCE_INLINE void _glPerspectiveDivideVertex(Vertex* vertex, const float h) {
const float f = _glFastInvert(vertex->w);
/* Convert to NDC and apply viewport */
vertex->xyz[0] = __builtin_fmaf(
VIEWPORT.hwidth, vertex->xyz[0] * f, VIEWPORT.x_plus_hwidth
);
vertex->xyz[1] = h - __builtin_fmaf(
VIEWPORT.hheight, vertex->xyz[1] * f, VIEWPORT.y_plus_hheight
);
/* Orthographic projections need to use invZ otherwise we lose
the depth information. As w == 1, and clip-space range is -w to +w
we add 1.0 to the Z to bring it into range. We add a little extra to
avoid a divide by zero.
*/
vertex->xyz[2] = (vertex->w == 1.0f) ? _glFastInvert(1.0001f + vertex->xyz[2]) : f;
}
GL_FORCE_INLINE void _glSubmitHeaderOrVertex(volatile uint32_t* d, const Vertex* v) {
#ifndef NDEBUG
gl_assert(!isnan(v->xyz[2]));
gl_assert(!isnan(v->w));
#endif
#if CLIP_DEBUG
printf("Submitting: %x (%x)\n", v, v->flags);
#endif
uint32_t *s = (uint32_t*) v;
d[0] = *(s++);
d[1] = *(s++);
d[2] = *(s++);
d[3] = *(s++);
d[4] = *(s++);
d[5] = *(s++);
d[6] = *(s++);
d[7] = *(s++);
__asm__("pref @%0" : : "r"(d));
d += 8;
}
static inline void interpolateColour(const uint32_t* a, const uint32_t* b, const float t, uint32_t* out) {
const static uint32_t MASK1 = 0x00FF00FF;
const static uint32_t MASK2 = 0xFF00FF00;
const uint32_t f2 = 256 * t;
const uint32_t f1 = 256 - f2;
*out = (((((*a & MASK1) * f1) + ((*b & MASK1) * f2)) >> 8) & MASK1) |
(((((*a & MASK2) * f1) + ((*b & MASK2) * f2)) >> 8) & MASK2);
}
static inline void _glClipEdge(const Vertex* v1, const Vertex* v2, Vertex* vout) {
/* Clipping time! */
const float d0 = v1->w + v1->xyz[2];
const float d1 = v2->w + v2->xyz[2];
const float sign = ((2.0f * (d1 < d0)) - 1.0f);
const float epsilon = -0.00001f * sign;
const float n = (d0 - d1);
const float r = (1.f / sqrtf(n * n)) * sign;
float t = fmaf(r, d0, epsilon);
vout->xyz[0] = fmaf(v2->xyz[0] - v1->xyz[0], t, v1->xyz[0]);
vout->xyz[1] = fmaf(v2->xyz[1] - v1->xyz[1], t, v1->xyz[1]);
vout->xyz[2] = fmaf(v2->xyz[2] - v1->xyz[2], t, v1->xyz[2]);
vout->w = fmaf(v2->w - v1->w, t, v1->w);
vout->uv[0] = fmaf(v2->uv[0] - v1->uv[0], t, v1->uv[0]);
vout->uv[1] = fmaf(v2->uv[1] - v1->uv[1], t, v1->uv[1]);
interpolateColour((uint32_t*) v1->bgra, (uint32_t*) v2->bgra, t, (uint32_t*) vout->bgra);
}
#define SPAN_SORT_CFG 0x005F8030
static volatile int *pvrdmacfg = (int*)0xA05F6888;
static volatile int *qacr = (int*)0xFF000038;
void SceneListSubmit(void* src, int n) {
/* You need at least a header, and 3 vertices to render anything */
if(n < 4) {
return;
}
const float h = GetVideoMode()->height;
PVR_SET(SPAN_SORT_CFG, 0x0);
//Set PVR DMA registers
pvrdmacfg[0] = 1;
pvrdmacfg[1] = 0;
//Set QACR registers
qacr[1] = qacr[0] = 0x11;
volatile uint32_t *d = SQ_BASE_ADDRESS;
int8_t queue_head = 0;
int8_t queue_tail = 0;
/* The most vertices ever in the queue is 5 (as some clipping operations
* produce and additional couple of vertice, but we add one more so the ring buffer doesn't
* trip over itself (e.g. if tail == head we can guarantee it's empty, not full) */
Vertex __attribute__((aligned(32))) queue[6];
const int queue_capacity = sizeof(queue) / sizeof(Vertex);
Vertex* vertex = (Vertex*) src;
uint32_t visible_mask = 0;
#define QUEUE_OFFSET(n) (queue + ((queue_head + (n)) % queue_capacity))
#define PUSH_VERTEX(v) \
do { \
memcpy_vertex(queue + queue_tail, (v)); \
visible_mask = (visible_mask << 1) | ((v)->xyz[2] >= -(v)->w); \
queue_tail = (queue_tail + 1) % queue_capacity; \
} while(0)
/* Assume first entry is a header */
_glSubmitHeaderOrVertex(d, vertex++);
/* Push first 2 vertices of the strip */
PUSH_VERTEX(vertex);
++vertex;
PUSH_VERTEX(vertex);
++vertex;
n -= 3;
while(n--) {
Vertex* current = vertex;
if(!glIsVertex(vertex->flags)) {
_glSubmitHeaderOrVertex(d, vertex);
++vertex;
continue;
} else {
PUSH_VERTEX(vertex);
++vertex;
}
switch(visible_mask) {
case 0:
queue_head = (queue_head + 1) % queue_capacity;
continue;
break;
case 7:
/* All visible, push the first vertex and move on */
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
queue_head = (queue_head + 1) % queue_capacity;
visible_mask >>= 1;
if(glIsLastVertex(current->flags)) {
/* If this was the last vertex in the strip, we clear the
* triangle out */
while(queue_head != queue_tail) {
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
queue_head = (queue_head + 1) % queue_capacity;
}
visible_mask = 0;
}
break;
case 4:
/* First vertex was visible */
{
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, v1, &a);
_glClipEdge(v2, v0, &b);
a.flags = GPU_CMD_VERTEX;
/* If v2 was the last in the strip, then b should be. If it wasn't
we'll create a degenerate triangle by adding b twice in a row so that the
strip processing will continue correctly after crossing the plane so it can
cross back*/
b.flags = v2->flags;
// v0 is already at the head of the queue
memcpy_vertex(QUEUE_OFFSET(1), &a); // replace
memcpy_vertex(QUEUE_OFFSET(2), &b); // replace
PUSH_VERTEX(&b); /* Additional vertex */
visible_mask = 15; /* All 4 vertices visible */
}
break;
case 2:
/* Second vertex was visible. In self case we need to create a triangle and produce
two new vertices: 1-2, and 2-3. */
{
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, v1, &a);
_glClipEdge(v1, v2, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX_EOL;
memcpy_vertex(QUEUE_OFFSET(0), &a); // replace
memcpy_vertex(QUEUE_OFFSET(2), &b); // replace
visible_mask = 7; /* All 3 vertices visible */
}
break;
case 6: /* First and second vertex were visible */
{
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v1, v2, &a);
_glClipEdge(v2, v0, &b);
a.flags = v2->flags;
b.flags = GPU_CMD_VERTEX;
memcpy_vertex(QUEUE_OFFSET(2), &b); // replace
PUSH_VERTEX(v1); /* Additional vertex */
PUSH_VERTEX(&a); /* Additional vertex */
visible_mask = 31; /* All 5 vertices visible */
}
break;
case 1:
/* Third vertex was visible. */
{
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(&v2, v0, &a);
_glClipEdge(v1, &v2, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX;
memcpy_vertex(QUEUE_OFFSET(0), &a); // replace
memcpy_vertex(QUEUE_OFFSET(1), &a); // replace
memcpy_vertex(QUEUE_OFFSET(2), &b); // replace
PUSH_VERTEX(&v2); /* Additional vertex */
visible_mask = 15; /* All 4 vertices visible */
}
break;
case 5: /* First and third vertex were visible */
{
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
Vertex* v0 = &queue[queue_head];
Vertex v1 = queue[(queue_head + 1) % queue_capacity];
Vertex v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, &v1, &a);
_glClipEdge(&v1, &v2, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX;
memcpy_vertex(QUEUE_OFFSET(1), &a); // replace
uint32_t v2_flags = v2.flags;
v2.flags = GPU_CMD_VERTEX;
memcpy_vertex(QUEUE_OFFSET(2), &v2); // replace
v2.flags = v2_flags;
PUSH_VERTEX(&b); /* Additional vertex */
PUSH_VERTEX(&v2); /* Additional vertex */
visible_mask = 31; /* All 5 vertices visible */
}
break;
case 3: /* Second and third vertex were visible */
{
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
Vertex* v0 = &queue[queue_head];
Vertex v1 = queue[(queue_head + 1) % queue_capacity];
Vertex v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, &v1, &a);
_glClipEdge(&v2, v0, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX;
memcpy_vertex(QUEUE_OFFSET(0), &a); // replace
memcpy_vertex(QUEUE_OFFSET(2), &b); // replace
PUSH_VERTEX(&v1); /* Additional vertex */
PUSH_VERTEX(&v2); /* Additional vertex */
fprintf(stderr, "%x\n", queue[((queue_tail - 1) % queue_capacity)].flags);
visible_mask = 31; /* All 5 vertices visible */
}
break;
default:
break;
}
if(glIsLastVertex(current->flags)) {
/* If this was the last vertex in the strip, we need to flush the queue and then
restart it again */
while(visible_mask) {
// There are 3 vertices, so we push the first one
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
queue_head = (queue_head + 1) % queue_capacity;
/* This bitmask is reversed to the direction it should be, but we're effectively counting
the bits here. Either everything is visible, or it was clipped and so everything is visible */
visible_mask >>= 1;
}
} else {
/* Here we need to submit vertices until the visible mask is < 4
* which would mean there are only 2 vertices queued */
while(visible_mask > 3) {
// There are 3 vertices, so we push the first one
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
queue_head = (queue_head + 1) % queue_capacity;
int mask = (0x80000000 >> __builtin_clz(visible_mask));
visible_mask &= ~mask;
}
}
}
}
void SceneListFinish() {
pvr_list_finish();
}
void SceneFinish() {
pvr_scene_finish();
}
const VideoMode* GetVideoMode() {
static VideoMode mode;
mode.width = vid_mode->width;
mode.height = vid_mode->height;
return &mode;
}