// This file is part of the FidelityFX SDK. // // Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #if !defined(FFX_FSR2_COMMON_H) #define FFX_FSR2_COMMON_H #if defined(FFX_CPU) || defined(FFX_GPU) //Locks #define LOCK_LIFETIME_REMAINING 0 #define LOCK_TEMPORAL_LUMA 1 #define LOCK_TRUST 2 #endif // #if defined(FFX_CPU) || defined(FFX_GPU) #if defined(FFX_GPU) FFX_STATIC const FfxFloat32 FSR2_EPSILON = 1e-03f; FFX_STATIC const FfxFloat32 FSR2_TONEMAP_EPSILON = 1e-03f; FFX_STATIC const FfxFloat32 FSR2_FLT_MAX = 3.402823466e+38f; FFX_STATIC const FfxFloat32 FSR2_FLT_MIN = 1.175494351e-38f; // treat vector truncation warnings as errors #pragma warning(error: 3206) // suppress warnings #pragma warning(disable: 3205) // conversion from larger type to smaller #pragma warning(disable: 3571) // in ffxPow(f, e), f could be negative // Reconstructed depth usage FFX_STATIC const FfxFloat32 reconstructedDepthBilinearWeightThreshold = 0.05f; // Accumulation FFX_STATIC const FfxFloat32 averageLanczosWeightPerFrame = 0.74f; // Average lanczos weight for jitter accumulated samples FFX_STATIC const FfxFloat32 accumulationMaxOnMotion = 4.0f; // Auto exposure FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f; struct LockState { FfxBoolean NewLock; //Set for both unique new and re-locked new FfxBoolean WasLockedPrevFrame; //Set to identify if the pixel was already locked (relock) }; FfxFloat32 GetNormalizedRemainingLockLifetime(FfxFloat32x3 fLockStatus) { const FfxFloat32 fTrust = fLockStatus[LOCK_TRUST]; return ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - LockInitialLifetime()) / LockInitialLifetime() * fTrust; } #if FFX_HALF FFX_MIN16_F GetNormalizedRemainingLockLifetime(FFX_MIN16_F3 fLockStatus) { const FFX_MIN16_F fTrust = fLockStatus[LOCK_TRUST]; const FFX_MIN16_F fInitialLockLifetime = FFX_MIN16_F(LockInitialLifetime()); return ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - fInitialLockLifetime) / fInitialLockLifetime * fTrust; } #endif void InitializeNewLockSample(FFX_PARAMETER_OUT FfxFloat32x3 fLockStatus) { fLockStatus = FfxFloat32x3(0, 0, 1); // LOCK_TRUST to 1 } #if FFX_HALF void InitializeNewLockSample(FFX_PARAMETER_OUT FFX_MIN16_F3 fLockStatus) { fLockStatus = FFX_MIN16_F3(0, 0, 1); // LOCK_TRUST to 1 } #endif void KillLock(FFX_PARAMETER_INOUT FfxFloat32x3 fLockStatus) { fLockStatus[LOCK_LIFETIME_REMAINING] = 0; } #if FFX_HALF void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F3 fLockStatus) { fLockStatus[LOCK_LIFETIME_REMAINING] = FFX_MIN16_F(0); } #endif struct RectificationBoxData { FfxFloat32x3 boxCenter; FfxFloat32x3 boxVec; FfxFloat32x3 aabbMin; FfxFloat32x3 aabbMax; }; #if FFX_HALF struct RectificationBoxDataMin16 { FFX_MIN16_F3 boxCenter; FFX_MIN16_F3 boxVec; FFX_MIN16_F3 aabbMin; FFX_MIN16_F3 aabbMax; }; #endif struct RectificationBox { RectificationBoxData data_; FfxFloat32 fBoxCenterWeight; }; #if FFX_HALF struct RectificationBoxMin16 { RectificationBoxDataMin16 data_; FFX_MIN16_F fBoxCenterWeight; }; #endif void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 initialColorSample) { rectificationBox.fBoxCenterWeight = FfxFloat32(0); rectificationBox.data_.boxCenter = FfxFloat32x3(0, 0, 0); rectificationBox.data_.boxVec = FfxFloat32x3(0, 0, 0); rectificationBox.data_.aabbMin = initialColorSample; rectificationBox.data_.aabbMax = initialColorSample; } #if FFX_HALF void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 initialColorSample) { rectificationBox.fBoxCenterWeight = FFX_MIN16_F(0); rectificationBox.data_.boxCenter = FFX_MIN16_F3(0, 0, 0); rectificationBox.data_.boxVec = FFX_MIN16_F3(0, 0, 0); rectificationBox.data_.aabbMin = initialColorSample; rectificationBox.data_.aabbMax = initialColorSample; } #endif void RectificationBoxAddSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight) { rectificationBox.data_.aabbMin = ffxMin(rectificationBox.data_.aabbMin, colorSample); rectificationBox.data_.aabbMax = ffxMax(rectificationBox.data_.aabbMax, colorSample); FfxFloat32x3 weightedSample = colorSample * fSampleWeight; rectificationBox.data_.boxCenter += weightedSample; rectificationBox.data_.boxVec += colorSample * weightedSample; rectificationBox.fBoxCenterWeight += fSampleWeight; } #if FFX_HALF void RectificationBoxAddSample(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight) { rectificationBox.data_.aabbMin = ffxMin(rectificationBox.data_.aabbMin, colorSample); rectificationBox.data_.aabbMax = ffxMax(rectificationBox.data_.aabbMax, colorSample); FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight; rectificationBox.data_.boxCenter += weightedSample; rectificationBox.data_.boxVec += colorSample * weightedSample; rectificationBox.fBoxCenterWeight += fSampleWeight; } #endif void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBox rectificationBox) { rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FfxFloat32(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FfxFloat32(1.f)); rectificationBox.data_.boxCenter /= rectificationBox.fBoxCenterWeight; rectificationBox.data_.boxVec /= rectificationBox.fBoxCenterWeight; FfxFloat32x3 stdDev = sqrt(abs(rectificationBox.data_.boxVec - rectificationBox.data_.boxCenter * rectificationBox.data_.boxCenter)); rectificationBox.data_.boxVec = stdDev; } #if FFX_HALF void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox) { rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FFX_MIN16_F(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FFX_MIN16_F(1.f)); rectificationBox.data_.boxCenter /= rectificationBox.fBoxCenterWeight; rectificationBox.data_.boxVec /= rectificationBox.fBoxCenterWeight; FFX_MIN16_F3 stdDev = sqrt(abs(rectificationBox.data_.boxVec - rectificationBox.data_.boxCenter * rectificationBox.data_.boxCenter)); rectificationBox.data_.boxVec = stdDev; } #endif RectificationBoxData RectificationBoxGetData(FFX_PARAMETER_INOUT RectificationBox rectificationBox) { return rectificationBox.data_; } #if FFX_HALF RectificationBoxDataMin16 RectificationBoxGetData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox) { return rectificationBox.data_; } #endif FfxFloat32x3 SafeRcp3(FfxFloat32x3 v) { return (all(FFX_NOT_EQUAL(v, FfxFloat32x3(0, 0, 0)))) ? (FfxFloat32x3(1, 1, 1) / v) : FfxFloat32x3(0, 0, 0); } #if FFX_HALF FFX_MIN16_F3 SafeRcp3(FFX_MIN16_F3 v) { return (all(FFX_NOT_EQUAL(v, FFX_MIN16_F3(0, 0, 0)))) ? (FFX_MIN16_F3(1, 1, 1) / v) : FFX_MIN16_F3(0, 0, 0); } #endif FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1) { const FfxFloat32 m = ffxMax(v0, v1); return m != 0 ? ffxMin(v0, v1) / m : 0; } #if FFX_HALF FFX_MIN16_F MinDividedByMax(const FFX_MIN16_F v0, const FFX_MIN16_F v1) { const FFX_MIN16_F m = ffxMax(v0, v1); return m != FFX_MIN16_F(0) ? ffxMin(v0, v1) / m : FFX_MIN16_F(0); } #endif FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg) { FfxFloat32x3 fRgb; fYCoCg.yz -= FfxFloat32x2(0.5f, 0.5f); // [0,1] -> [-0.5,0.5] fRgb = FfxFloat32x3( fYCoCg.x + fYCoCg.y - fYCoCg.z, fYCoCg.x + fYCoCg.z, fYCoCg.x - fYCoCg.y - fYCoCg.z); return fRgb; } #if FFX_HALF FFX_MIN16_F3 YCoCgToRGB(FFX_MIN16_F3 fYCoCg) { FFX_MIN16_F3 fRgb; fYCoCg.yz -= FFX_MIN16_F2(0.5f, 0.5f); // [0,1] -> [-0.5,0.5] fRgb = FFX_MIN16_F3( fYCoCg.x + fYCoCg.y - fYCoCg.z, fYCoCg.x + fYCoCg.z, fYCoCg.x - fYCoCg.y - fYCoCg.z); return fRgb; } #endif FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb) { FfxFloat32x3 fYCoCg; fYCoCg = FfxFloat32x3( 0.25f * fRgb.r + 0.5f * fRgb.g + 0.25f * fRgb.b, 0.5f * fRgb.r - 0.5f * fRgb.b, -0.25f * fRgb.r + 0.5f * fRgb.g - 0.25f * fRgb.b); fYCoCg.yz += FfxFloat32x2(0.5f, 0.5f); // [-0.5,0.5] -> [0,1] return fYCoCg; } #if FFX_HALF FFX_MIN16_F3 RGBToYCoCg(FFX_MIN16_F3 fRgb) { FFX_MIN16_F3 fYCoCg; fYCoCg = FFX_MIN16_F3( 0.25 * fRgb.r + 0.5 * fRgb.g + 0.25 * fRgb.b, 0.5 * fRgb.r - 0.5 * fRgb.b, -0.25 * fRgb.r + 0.5 * fRgb.g - 0.25 * fRgb.b); fYCoCg.yz += FFX_MIN16_F2(0.5, 0.5); // [-0.5,0.5] -> [0,1] return fYCoCg; } #endif FfxFloat32 RGBToLuma(FfxFloat32x3 fLinearRgb) { return dot(fLinearRgb, FfxFloat32x3(0.2126f, 0.7152f, 0.0722f)); } #if FFX_HALF FFX_MIN16_F RGBToLuma(FFX_MIN16_F3 fLinearRgb) { return dot(fLinearRgb, FFX_MIN16_F3(0.2126f, 0.7152f, 0.0722f)); } #endif FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb) { FfxFloat32 fLuminance = RGBToLuma(fLinearRgb); FfxFloat32 fPercievedLuminance = 0; if (fLuminance <= 216.0f / 24389.0f) { fPercievedLuminance = fLuminance * (24389.0f / 27.0f); } else { fPercievedLuminance = ffxPow(fLuminance, 1.0f / 3.0f) * 116.0f - 16.0f; } return fPercievedLuminance * 0.01f; } #if FFX_HALF FFX_MIN16_F RGBToPerceivedLuma(FFX_MIN16_F3 fLinearRgb) { FFX_MIN16_F fLuminance = RGBToLuma(fLinearRgb); FFX_MIN16_F fPercievedLuminance = FFX_MIN16_F(0); if (fLuminance <= FFX_MIN16_F(216.0f / 24389.0f)) { fPercievedLuminance = fLuminance * FFX_MIN16_F(24389.0f / 27.0f); } else { fPercievedLuminance = ffxPow(fLuminance, FFX_MIN16_F(1.0f / 3.0f)) * FFX_MIN16_F(116.0f) - FFX_MIN16_F(16.0f); } return fPercievedLuminance * FFX_MIN16_F(0.01f); } #endif FfxFloat32x3 Tonemap(FfxFloat32x3 fRgb) { return fRgb / (ffxMax(ffxMax(0.f, fRgb.r), ffxMax(fRgb.g, fRgb.b)) + 1.f).xxx; } FfxFloat32x3 InverseTonemap(FfxFloat32x3 fRgb) { return fRgb / ffxMax(FSR2_TONEMAP_EPSILON, 1.f - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx; } #if FFX_HALF FFX_MIN16_F3 Tonemap(FFX_MIN16_F3 fRgb) { return fRgb / (ffxMax(ffxMax(FFX_MIN16_F(0.f), fRgb.r), ffxMax(fRgb.g, fRgb.b)) + FFX_MIN16_F(1.f)).xxx; } FFX_MIN16_F3 InverseTonemap(FFX_MIN16_F3 fRgb) { return fRgb / ffxMax(FFX_MIN16_F(FSR2_TONEMAP_EPSILON), FFX_MIN16_F(1.f) - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx; } #endif FfxInt32x2 ClampLoad(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize) { return clamp(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1)); } #if FFX_HALF FFX_MIN16_I2 ClampLoad(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize) { return clamp(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1)); } #endif FfxBoolean IsOnScreen(FfxInt32x2 pos, FfxInt32x2 size) { return all(FFX_GREATER_THAN_EQUAL(pos, FfxInt32x2(0, 0))) && all(FFX_LESS_THAN(pos, size)); } #if FFX_HALF FfxBoolean IsOnScreen(FFX_MIN16_I2 pos, FFX_MIN16_I2 size) { return all(FFX_GREATER_THAN_EQUAL(pos, FFX_MIN16_I2(0, 0))) && all(FFX_LESS_THAN(pos, size)); } #endif FfxFloat32 ComputeAutoExposureFromLavg(FfxFloat32 Lavg) { Lavg = exp(Lavg); const FfxFloat32 S = 100.0f; //ISO arithmetic speed const FfxFloat32 K = 12.5f; FfxFloat32 ExposureISO100 = log2((Lavg * S) / K); const FfxFloat32 q = 0.65f; FfxFloat32 Lmax = (78.0f / (q * S)) * ffxPow(2.0f, ExposureISO100); return 1 / Lmax; } #if FFX_HALF FFX_MIN16_F ComputeAutoExposureFromLavg(FFX_MIN16_F Lavg) { Lavg = exp(Lavg); const FFX_MIN16_F S = FFX_MIN16_F(100.0f); //ISO arithmetic speed const FFX_MIN16_F K = FFX_MIN16_F(12.5f); const FFX_MIN16_F ExposureISO100 = log2((Lavg * S) / K); const FFX_MIN16_F q = FFX_MIN16_F(0.65f); const FFX_MIN16_F Lmax = (FFX_MIN16_F(78.0f) / (q * S)) * ffxPow(FFX_MIN16_F(2.0f), ExposureISO100); return FFX_MIN16_F(1) / Lmax; } #endif FfxInt32x2 ComputeHrPosFromLrPos(FfxInt32x2 iPxLrPos) { FfxFloat32x2 fSrcJitteredPos = FfxFloat32x2(iPxLrPos) + 0.5f - Jitter(); FfxFloat32x2 fLrPosInHr = (fSrcJitteredPos / RenderSize()) * DisplaySize(); FfxFloat32x2 fHrPos = floor(fLrPosInHr) + 0.5f; return FfxInt32x2(fHrPos); } #if FFX_HALF FFX_MIN16_I2 ComputeHrPosFromLrPos(FFX_MIN16_I2 iPxLrPos) { FFX_MIN16_F2 fSrcJitteredPos = FFX_MIN16_F2(iPxLrPos) + FFX_MIN16_F(0.5f) - FFX_MIN16_F2(Jitter()); FFX_MIN16_F2 fLrPosInHr = (fSrcJitteredPos / FFX_MIN16_F2(RenderSize())) * FFX_MIN16_F2(DisplaySize()); FFX_MIN16_F2 fHrPos = floor(fLrPosInHr) + FFX_MIN16_F(0.5); return FFX_MIN16_I2(fHrPos); } #endif #endif // #if defined(FFX_GPU) #endif //!defined(FFX_FSR2_COMMON_H)