/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2020 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_SLIDER_JOINT_COMPONENTS_H #define REACTPHYSICS3D_SLIDER_JOINT_COMPONENTS_H // Libraries #include #include #include #include #include #include // ReactPhysics3D namespace namespace reactphysics3d { // Class declarations class MemoryAllocator; class EntityManager; class SliderJoint; enum class JointType; // Class SliderJointComponents /** * This class represent the component of the ECS with data for the SliderJoint. */ class SliderJointComponents : public Components { private: // -------------------- Attributes -------------------- // /// Array of joint entities Entity* mJointEntities; /// Array of pointers to the joints SliderJoint** mJoints; /// Anchor point of body 1 (in local-space coordinates of body 1) Vector3* mLocalAnchorPointBody1; /// Anchor point of body 2 (in local-space coordinates of body 2) Vector3* mLocalAnchorPointBody2; /// Inertia tensor of body 1 (in world-space coordinates) Matrix3x3* mI1; /// Inertia tensor of body 2 (in world-space coordinates) Matrix3x3* mI2; /// Accumulated impulse for the 3 translation constraints Vector2* mImpulseTranslation; /// Accumulate impulse for the 3 rotation constraints Vector3* mImpulseRotation; /// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix) Matrix2x2* mInverseMassMatrixTranslation; /// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix) Matrix3x3* mInverseMassMatrixRotation; /// Bias vector for the 3 translation constraints Vector2* mBiasTranslation; /// Bias vector for the 3 rotation constraints Vector3* mBiasRotation; /// Inverse of the initial orientation difference between the two bodies Quaternion* mInitOrientationDifferenceInv; /// Slider axis (in local-space coordinates of body 1) Vector3* mSliderAxisBody1; /// Slider axis in world-space coordinates Vector3* mSliderAxisWorld; /// Vector r1 in world-space coordinates Vector3* mR1; /// Vector r2 in world-space coordinates Vector3* mR2; /// First vector orthogonal to the slider axis local-space of body 1 Vector3* mN1; /// Second vector orthogonal to the slider axis and mN1 in local-space of body 1 Vector3* mN2; /// Accumulated impulse for the lower limit constraint decimal* mImpulseLowerLimit; /// Accumulated impulse for the upper limit constraint decimal* mImpulseUpperLimit; /// Accumulated impulse for the motor constraint; decimal* mImpulseMotor; /// Inverse of mass matrix K=JM^-1J^t for the upper and lower limit constraints (1x1 matrix) decimal* mInverseMassMatrixLimit; /// Inverse of mass matrix K=JM^-1J^t for the motor decimal* mInverseMassMatrixMotor; /// Bias of the lower limit constraint decimal* mBLowerLimit; /// Bias of the upper limit constraint decimal* mBUpperLimit; /// True if the joint limits are enabled bool* mIsLimitEnabled; /// True if the motor of the joint in enabled bool* mIsMotorEnabled; /// Lower limit (minimum allowed rotation angle in radian) decimal* mLowerLimit; /// Upper limit (maximum translation distance) decimal* mUpperLimit; /// True if the lower limit is violated bool* mIsLowerLimitViolated; /// True if the upper limit is violated bool* mIsUpperLimitViolated; /// Motor speed (in rad/s) decimal* mMotorSpeed; /// Maximum motor force (in Newtons) that can be applied to reach to desired motor speed decimal* mMaxMotorForce; /// Cross product of r2 and n1 Vector3* mR2CrossN1; /// Cross product of r2 and n2 Vector3* mR2CrossN2; /// Cross product of r2 and the slider axis Vector3* mR2CrossSliderAxis; /// Cross product of vector (r1 + u) and n1 Vector3* mR1PlusUCrossN1; /// Cross product of vector (r1 + u) and n2 Vector3* mR1PlusUCrossN2; /// Cross product of vector (r1 + u) and the slider axis Vector3* mR1PlusUCrossSliderAxis; // -------------------- Methods -------------------- // /// Allocate memory for a given number of components virtual void allocate(uint32 nbComponentsToAllocate) override; /// Destroy a component at a given index virtual void destroyComponent(uint32 index) override; /// Move a component from a source to a destination index in the components array virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override; /// Swap two components in the array virtual void swapComponents(uint32 index1, uint32 index2) override; public: /// Structure for the data of a transform component struct SliderJointComponent { bool isLimitEnabled; bool isMotorEnabled; decimal lowerLimit; decimal upperLimit; decimal motorSpeed; decimal maxMotorForce; /// Constructor SliderJointComponent(bool isLimitEnabled, bool isMotorEnabled, decimal lowerLimit, decimal upperLimit, decimal motorSpeed, decimal maxMotorForce) :isLimitEnabled(isLimitEnabled), isMotorEnabled(isMotorEnabled), lowerLimit(lowerLimit), upperLimit(upperLimit), motorSpeed(motorSpeed), maxMotorForce(maxMotorForce) { } }; // -------------------- Methods -------------------- // /// Constructor SliderJointComponents(MemoryAllocator& allocator); /// Destructor virtual ~SliderJointComponents() override = default; /// Add a component void addComponent(Entity jointEntity, bool isSleeping, const SliderJointComponent& component); /// Return a pointer to a given joint SliderJoint* getJoint(Entity jointEntity) const; /// Set the joint pointer to a given joint void setJoint(Entity jointEntity, SliderJoint* joint) const; /// Return the local anchor point of body 1 for a given joint const Vector3& getLocalAnchorPointBody1(Entity jointEntity) const; /// Set the local anchor point of body 1 for a given joint void setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1); /// Return the local anchor point of body 2 for a given joint const Vector3& getLocalAnchorPointBody2(Entity jointEntity) const; /// Set the local anchor point of body 2 for a given joint void setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2); /// Return the inertia tensor of body 1 (in world-space coordinates) const Matrix3x3& getI1(Entity jointEntity) const; /// Set the inertia tensor of body 1 (in world-space coordinates) void setI1(Entity jointEntity, const Matrix3x3& i1); /// Return the inertia tensor of body 2 (in world-space coordinates) const Matrix3x3& getI2(Entity jointEntity) const; /// Set the inertia tensor of body 2 (in world-space coordinates) void setI2(Entity jointEntity, const Matrix3x3& i2); /// Return the translation impulse Vector2& getImpulseTranslation(Entity jointEntity); /// Set the translation impulse void setImpulseTranslation(Entity jointEntity, const Vector2& impulseTranslation); /// Return the translation impulse Vector3& getImpulseRotation(Entity jointEntity); /// Set the translation impulse void setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation); /// Return the translation inverse mass matrix of the constraint Matrix2x2& getInverseMassMatrixTranslation(Entity jointEntity); /// Set the translation inverse mass matrix of the constraint void setInverseMassMatrixTranslation(Entity jointEntity, const Matrix2x2& inverseMassMatrix); /// Return the rotation inverse mass matrix of the constraint Matrix3x3& getInverseMassMatrixRotation(Entity jointEntity); /// Set the rotation inverse mass matrix of the constraint void setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix); /// Return the translation bias Vector2& getBiasTranslation(Entity jointEntity); /// Set the translation impulse void setBiasTranslation(Entity jointEntity, const Vector2& impulseTranslation); /// Return the rotation bias Vector3& getBiasRotation(Entity jointEntity); /// Set the rotation impulse void setBiasRotation(Entity jointEntity, const Vector3& impulseRotation); /// Return the initial orientation difference Quaternion& getInitOrientationDifferenceInv(Entity jointEntity); /// Set the rotation impulse void setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv); /// Return the slider axis (in local-space coordinates of body 1) Vector3& getSliderAxisBody1(Entity jointEntity); /// Set the slider axis (in local-space coordinates of body 1) void setSliderAxisBody1(Entity jointEntity, const Vector3& sliderAxisBody1); /// Retunr the slider axis in world-space coordinates Vector3& getSliderAxisWorld(Entity jointEntity); /// Set the slider axis in world-space coordinates void setSliderAxisWorld(Entity jointEntity, const Vector3& sliderAxisWorld); /// Return the vector r1 in world-space coordinates Vector3& getR1(Entity jointEntity); /// Set the vector r1 in world-space coordinates void setR1(Entity jointEntity, const Vector3& r1); /// Return the vector r2 in world-space coordinates Vector3& getR2(Entity jointEntity); /// Set the vector r2 in world-space coordinates void setR2(Entity jointEntity, const Vector3& r2); /// Return the first vector orthogonal to the slider axis local-space of body 1 Vector3& getN1(Entity jointEntity); /// Set the first vector orthogonal to the slider axis local-space of body 1 void setN1(Entity jointEntity, const Vector3& n1); /// Return the second vector orthogonal to the slider axis and mN1 in local-space of body 1 Vector3& getN2(Entity jointEntity); /// Set the second vector orthogonal to the slider axis and mN1 in local-space of body 1 void setN2(Entity jointEntity, const Vector3& n2); /// Return the accumulated impulse for the lower limit constraint decimal getImpulseLowerLimit(Entity jointEntity) const; /// Set the accumulated impulse for the lower limit constraint void setImpulseLowerLimit(Entity jointEntity, decimal impulseLowerLimit); /// Return the accumulated impulse for the upper limit constraint decimal getImpulseUpperLimit(Entity jointEntity) const; /// Set the accumulated impulse for the upper limit constraint void setImpulseUpperLimit(Entity jointEntity, decimal impulseUpperLimit) const; /// Return the accumulated impulse for the motor constraint; decimal getImpulseMotor(Entity jointEntity) const; /// Set the accumulated impulse for the motor constraint; void setImpulseMotor(Entity jointEntity, decimal impulseMotor); /// Return the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix) decimal getInverseMassMatrixLimit(Entity jointEntity) const; /// Set the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix) void setInverseMassMatrixLimit(Entity jointEntity, decimal inverseMassMatrixLimitMotor); /// Return the inverse of mass matrix K=JM^-1J^t for the motor decimal getInverseMassMatrixMotor(Entity jointEntity); /// Set the inverse of mass matrix K=JM^-1J^t for the motor void setInverseMassMatrixMotor(Entity jointEntity, decimal inverseMassMatrixMotor); /// Return the bias of the lower limit constraint decimal getBLowerLimit(Entity jointEntity) const; /// Set the bias of the lower limit constraint void setBLowerLimit(Entity jointEntity, decimal bLowerLimit) const; /// Return the bias of the upper limit constraint decimal getBUpperLimit(Entity jointEntity) const; /// Set the bias of the upper limit constraint void setBUpperLimit(Entity jointEntity, decimal bUpperLimit); /// Return true if the joint limits are enabled bool getIsLimitEnabled(Entity jointEntity) const; /// Set to true if the joint limits are enabled void setIsLimitEnabled(Entity jointEntity, bool isLimitEnabled); /// Return true if the motor of the joint in enabled bool getIsMotorEnabled(Entity jointEntity) const; /// Set to true if the motor of the joint in enabled void setIsMotorEnabled(Entity jointEntity, bool isMotorEnabled) const; /// Return the Lower limit (minimum allowed rotation angle in radian) decimal getLowerLimit(Entity jointEntity) const; /// Set the Lower limit (minimum allowed rotation angle in radian) void setLowerLimit(Entity jointEntity, decimal lowerLimit) const; /// Return the upper limit (maximum translation distance) decimal getUpperLimit(Entity jointEntity) const; /// Set the upper limit (maximum translation distance) void setUpperLimit(Entity jointEntity, decimal upperLimit); /// Return true if the lower limit is violated bool getIsLowerLimitViolated(Entity jointEntity) const; /// Set to true if the lower limit is violated void setIsLowerLimitViolated(Entity jointEntity, bool isLowerLimitViolated); /// Return true if the upper limit is violated bool getIsUpperLimitViolated(Entity jointEntity) const; /// Set to true if the upper limit is violated void setIsUpperLimitViolated(Entity jointEntity, bool isUpperLimitViolated) const; /// Return the motor speed (in rad/s) decimal getMotorSpeed(Entity jointEntity) const; /// Set the motor speed (in rad/s) void setMotorSpeed(Entity jointEntity, decimal motorSpeed); /// Return the maximum motor force (in Newtons) that can be applied to reach to desired motor speed decimal getMaxMotorForce(Entity jointEntity) const; /// Set the maximum motor force (in Newtons) that can be applied to reach to desired motor speed void setMaxMotorForce(Entity jointEntity, decimal maxMotorForce); /// Return the cross product of r2 and n1 Vector3& getR2CrossN1(Entity jointEntity); /// Set the cross product of r2 and n1 void setR2CrossN1(Entity jointEntity, const Vector3& r2CrossN1); /// Return the cross product of r2 and n2 Vector3& getR2CrossN2(Entity jointEntity); /// Set the cross product of r2 and n2 void setR2CrossN2(Entity jointEntity, const Vector3& r2CrossN2); /// Return the cross product of r2 and the slider axis Vector3& getR2CrossSliderAxis(Entity jointEntity); /// Set the cross product of r2 and the slider axis void setR2CrossSliderAxis(Entity jointEntity, const Vector3& r2CrossSliderAxis); /// Return the cross product of vector (r1 + u) and n1 Vector3& getR1PlusUCrossN1(Entity jointEntity); /// Set the cross product of vector (r1 + u) and n1 void setR1PlusUCrossN1(Entity jointEntity, const Vector3& r1PlusUCrossN1); /// Return the cross product of vector (r1 + u) and n2 Vector3& getR1PlusUCrossN2(Entity jointEntity); /// Set the cross product of vector (r1 + u) and n2 void setR1PlusUCrossN2(Entity jointEntity, const Vector3& r1PlusUCrossN2); /// Return the cross product of vector (r1 + u) and the slider axis Vector3& getR1PlusUCrossSliderAxis(Entity jointEntity); /// Set the cross product of vector (r1 + u) and the slider axis void setR1PlusUCrossSliderAxis(Entity jointEntity, const Vector3& r1PlusUCrossSliderAxis); // -------------------- Friendship -------------------- // friend class BroadPhaseSystem; friend class SolveSliderJointSystem; }; // Return a pointer to a given joint inline SliderJoint* SliderJointComponents::getJoint(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mJoints[mMapEntityToComponentIndex[jointEntity]]; } // Set the joint pointer to a given joint inline void SliderJointComponents::setJoint(Entity jointEntity, SliderJoint* joint) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mJoints[mMapEntityToComponentIndex[jointEntity]] = joint; } // Return the local anchor point of body 1 for a given joint inline const Vector3& SliderJointComponents::getLocalAnchorPointBody1(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]]; } // Set the local anchor point of body 1 for a given joint inline void SliderJointComponents::setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody1; } // Return the local anchor point of body 2 for a given joint inline const Vector3& SliderJointComponents::getLocalAnchorPointBody2(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]]; } // Set the local anchor point of body 2 for a given joint inline void SliderJointComponents::setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody2; } // Return the inertia tensor of body 1 (in world-space coordinates) inline const Matrix3x3& SliderJointComponents::getI1(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mI1[mMapEntityToComponentIndex[jointEntity]]; } // Set the inertia tensor of body 1 (in world-space coordinates) inline void SliderJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mI1[mMapEntityToComponentIndex[jointEntity]] = i1; } // Return the inertia tensor of body 2 (in world-space coordinates) inline const Matrix3x3& SliderJointComponents::getI2(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mI2[mMapEntityToComponentIndex[jointEntity]]; } // Set the inertia tensor of body 2 (in world-space coordinates) inline void SliderJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mI2[mMapEntityToComponentIndex[jointEntity]] = i2; } // Return the translation impulse inline Vector2& SliderJointComponents::getImpulseTranslation(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]]; } // Set the translation impulse inline void SliderJointComponents::setImpulseTranslation(Entity jointEntity, const Vector2& impulseTranslation) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation; } // Return the translation impulse inline Vector3& SliderJointComponents::getImpulseRotation(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mImpulseRotation[mMapEntityToComponentIndex[jointEntity]]; } // Set the translation impulse inline void SliderJointComponents::setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mImpulseRotation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation; } // Return the translation inverse mass matrix of the constraint inline Matrix2x2& SliderJointComponents::getInverseMassMatrixTranslation(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]]; } // Set the translation inverse mass matrix of the constraint inline void SliderJointComponents::setInverseMassMatrixTranslation(Entity jointEntity, const Matrix2x2& inverseMassMatrix) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix; } // Return the rotation inverse mass matrix of the constraint inline Matrix3x3& SliderJointComponents::getInverseMassMatrixRotation(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]]; } // Set the rotation inverse mass matrix of the constraint inline void SliderJointComponents::setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix; } // Return the translation bias inline Vector2& SliderJointComponents::getBiasTranslation(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mBiasTranslation[mMapEntityToComponentIndex[jointEntity]]; } // Set the translation impulse inline void SliderJointComponents::setBiasTranslation(Entity jointEntity, const Vector2& impulseTranslation) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mBiasTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation; } // Return the rotation bias inline Vector3& SliderJointComponents::getBiasRotation(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mBiasRotation[mMapEntityToComponentIndex[jointEntity]]; } // Set the rotation impulse inline void SliderJointComponents::setBiasRotation(Entity jointEntity, const Vector3& impulseRotation) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mBiasRotation[mMapEntityToComponentIndex[jointEntity]] = impulseRotation; } // Return the initial orientation difference inline Quaternion& SliderJointComponents::getInitOrientationDifferenceInv(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]]; } // Set the rotation impulse inline void SliderJointComponents::setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]] = initOrientationDifferenceInv; } // Return the slider axis (in local-space coordinates of body 1) inline Vector3& SliderJointComponents::getSliderAxisBody1(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mSliderAxisBody1[mMapEntityToComponentIndex[jointEntity]]; } // Set the slider axis (in local-space coordinates of body 1) inline void SliderJointComponents::setSliderAxisBody1(Entity jointEntity, const Vector3& sliderAxisBody1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mSliderAxisBody1[mMapEntityToComponentIndex[jointEntity]] = sliderAxisBody1; } // Retunr the slider axis in world-space coordinates inline Vector3& SliderJointComponents::getSliderAxisWorld(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mSliderAxisWorld[mMapEntityToComponentIndex[jointEntity]]; } // Set the slider axis in world-space coordinates inline void SliderJointComponents::setSliderAxisWorld(Entity jointEntity, const Vector3& sliderAxisWorld) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mSliderAxisWorld[mMapEntityToComponentIndex[jointEntity]] = sliderAxisWorld; } // Return the vector r1 in world-space coordinates inline Vector3& SliderJointComponents::getR1(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR1[mMapEntityToComponentIndex[jointEntity]]; } // Set the vector r1 in world-space coordinates inline void SliderJointComponents::setR1(Entity jointEntity, const Vector3& r1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR1[mMapEntityToComponentIndex[jointEntity]] = r1; } // Return the vector r2 in world-space coordinates inline Vector3& SliderJointComponents::getR2(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR2[mMapEntityToComponentIndex[jointEntity]]; } // Set the vector r2 in world-space coordinates inline void SliderJointComponents::setR2(Entity jointEntity, const Vector3& r2) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR2[mMapEntityToComponentIndex[jointEntity]] = r2; } // Return the first vector orthogonal to the slider axis local-space of body 1 inline Vector3& SliderJointComponents::getN1(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mN1[mMapEntityToComponentIndex[jointEntity]]; } // Set the first vector orthogonal to the slider axis local-space of body 1 inline void SliderJointComponents::setN1(Entity jointEntity, const Vector3& n1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mN1[mMapEntityToComponentIndex[jointEntity]] = n1; } // Return the second vector orthogonal to the slider axis and mN1 in local-space of body 1 inline Vector3& SliderJointComponents::getN2(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mN2[mMapEntityToComponentIndex[jointEntity]]; } // Set the second vector orthogonal to the slider axis and mN1 in local-space of body 1 inline void SliderJointComponents::setN2(Entity jointEntity, const Vector3& n2) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mN2[mMapEntityToComponentIndex[jointEntity]] = n2; } // Return the accumulated impulse for the lower limit constraint inline decimal SliderJointComponents::getImpulseLowerLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mImpulseLowerLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the accumulated impulse for the lower limit constraint inline void SliderJointComponents::setImpulseLowerLimit(Entity jointEntity, decimal impulseLowerLimit) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mImpulseLowerLimit[mMapEntityToComponentIndex[jointEntity]] = impulseLowerLimit; } // Return the accumulated impulse for the upper limit constraint inline decimal SliderJointComponents::getImpulseUpperLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mImpulseUpperLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the accumulated impulse for the upper limit constraint inline void SliderJointComponents::setImpulseUpperLimit(Entity jointEntity, decimal impulseUpperLimit) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mImpulseUpperLimit[mMapEntityToComponentIndex[jointEntity]] = impulseUpperLimit; } // Return the accumulated impulse for the motor constraint; inline decimal SliderJointComponents::getImpulseMotor(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mImpulseMotor[mMapEntityToComponentIndex[jointEntity]]; } // Set the accumulated impulse for the motor constraint; inline void SliderJointComponents::setImpulseMotor(Entity jointEntity, decimal impulseMotor) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mImpulseMotor[mMapEntityToComponentIndex[jointEntity]] = impulseMotor; } // Return the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix) inline decimal SliderJointComponents::getInverseMassMatrixLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mInverseMassMatrixLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix) inline void SliderJointComponents::setInverseMassMatrixLimit(Entity jointEntity, decimal inverseMassMatrixLimitMotor) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mInverseMassMatrixLimit[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrixLimitMotor; } // Return the inverse of mass matrix K=JM^-1J^t for the motor inline decimal SliderJointComponents::getInverseMassMatrixMotor(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mInverseMassMatrixMotor[mMapEntityToComponentIndex[jointEntity]]; } // Return the inverse of mass matrix K=JM^-1J^t for the motor inline void SliderJointComponents::setInverseMassMatrixMotor(Entity jointEntity, decimal inverseMassMatrixMotor) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mInverseMassMatrixMotor[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrixMotor; } // Return the bias of the lower limit constraint inline decimal SliderJointComponents::getBLowerLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mBLowerLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the bias of the lower limit constraint inline void SliderJointComponents::setBLowerLimit(Entity jointEntity, decimal bLowerLimit) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mBLowerLimit[mMapEntityToComponentIndex[jointEntity]] = bLowerLimit; } // Return the bias of the upper limit constraint inline decimal SliderJointComponents::getBUpperLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mBUpperLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the bias of the upper limit constraint inline void SliderJointComponents::setBUpperLimit(Entity jointEntity, decimal bUpperLimit) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mBUpperLimit[mMapEntityToComponentIndex[jointEntity]] = bUpperLimit; } // Return true if the joint limits are enabled inline bool SliderJointComponents::getIsLimitEnabled(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mIsLimitEnabled[mMapEntityToComponentIndex[jointEntity]]; } // Set to true if the joint limits are enabled inline void SliderJointComponents::setIsLimitEnabled(Entity jointEntity, bool isLimitEnabled) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mIsLimitEnabled[mMapEntityToComponentIndex[jointEntity]] = isLimitEnabled; } // Return true if the motor of the joint in enabled inline bool SliderJointComponents::getIsMotorEnabled(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mIsMotorEnabled[mMapEntityToComponentIndex[jointEntity]]; } // Set to true if the motor of the joint in enabled inline void SliderJointComponents::setIsMotorEnabled(Entity jointEntity, bool isMotorEnabled) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mIsMotorEnabled[mMapEntityToComponentIndex[jointEntity]] = isMotorEnabled; } // Return the Lower limit (minimum allowed rotation angle in radian) inline decimal SliderJointComponents::getLowerLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mLowerLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the Lower limit (minimum allowed rotation angle in radian) inline void SliderJointComponents::setLowerLimit(Entity jointEntity, decimal lowerLimit) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mLowerLimit[mMapEntityToComponentIndex[jointEntity]] = lowerLimit; } // Return the upper limit (maximum translation distance) inline decimal SliderJointComponents::getUpperLimit(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mUpperLimit[mMapEntityToComponentIndex[jointEntity]]; } // Set the upper limit (maximum translation distance) inline void SliderJointComponents::setUpperLimit(Entity jointEntity, decimal upperLimit) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mUpperLimit[mMapEntityToComponentIndex[jointEntity]] = upperLimit; } // Return true if the lower limit is violated inline bool SliderJointComponents::getIsLowerLimitViolated(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mIsLowerLimitViolated[mMapEntityToComponentIndex[jointEntity]]; } // Set to true if the lower limit is violated inline void SliderJointComponents::setIsLowerLimitViolated(Entity jointEntity, bool isLowerLimitViolated) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mIsLowerLimitViolated[mMapEntityToComponentIndex[jointEntity]] = isLowerLimitViolated; } // Return true if the upper limit is violated inline bool SliderJointComponents::getIsUpperLimitViolated(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mIsUpperLimitViolated[mMapEntityToComponentIndex[jointEntity]]; } // Set to true if the upper limit is violated inline void SliderJointComponents::setIsUpperLimitViolated(Entity jointEntity, bool isUpperLimitViolated) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mIsUpperLimitViolated[mMapEntityToComponentIndex[jointEntity]] = isUpperLimitViolated; } // Return the motor speed (in rad/s) inline decimal SliderJointComponents::getMotorSpeed(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mMotorSpeed[mMapEntityToComponentIndex[jointEntity]]; } // Set the motor speed (in rad/s) inline void SliderJointComponents::setMotorSpeed(Entity jointEntity, decimal motorSpeed) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mMotorSpeed[mMapEntityToComponentIndex[jointEntity]] = motorSpeed; } // Return the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed inline decimal SliderJointComponents::getMaxMotorForce(Entity jointEntity) const { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mMaxMotorForce[mMapEntityToComponentIndex[jointEntity]]; } // Set the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed inline void SliderJointComponents::setMaxMotorForce(Entity jointEntity, decimal maxMotorForce) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mMaxMotorForce[mMapEntityToComponentIndex[jointEntity]] = maxMotorForce; } // Return the cross product of r2 and n1 inline Vector3& SliderJointComponents::getR2CrossN1(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR2CrossN1[mMapEntityToComponentIndex[jointEntity]]; } // Set the cross product of r2 and n1 inline void SliderJointComponents::setR2CrossN1(Entity jointEntity, const Vector3& r2CrossN1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR2CrossN1[mMapEntityToComponentIndex[jointEntity]] = r2CrossN1; } // Return the cross product of r2 and n2 inline Vector3& SliderJointComponents::getR2CrossN2(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR2CrossN2[mMapEntityToComponentIndex[jointEntity]]; } // Set the cross product of r2 and n2 inline void SliderJointComponents::setR2CrossN2(Entity jointEntity, const Vector3& r2CrossN2) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR2CrossN2[mMapEntityToComponentIndex[jointEntity]] = r2CrossN2; } // Return the cross product of r2 and the slider axis inline Vector3& SliderJointComponents::getR2CrossSliderAxis(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR2CrossSliderAxis[mMapEntityToComponentIndex[jointEntity]]; } // Set the cross product of r2 and the slider axis inline void SliderJointComponents::setR2CrossSliderAxis(Entity jointEntity, const Vector3& r2CrossSliderAxis) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR2CrossSliderAxis[mMapEntityToComponentIndex[jointEntity]] = r2CrossSliderAxis; } // Return the cross product of vector (r1 + u) and n1 inline Vector3& SliderJointComponents::getR1PlusUCrossN1(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR1PlusUCrossN1[mMapEntityToComponentIndex[jointEntity]]; } // Set the cross product of vector (r1 + u) and n1 inline void SliderJointComponents::setR1PlusUCrossN1(Entity jointEntity, const Vector3& r1PlusUCrossN1) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR1PlusUCrossN1[mMapEntityToComponentIndex[jointEntity]] = r1PlusUCrossN1; } // Return the cross product of vector (r1 + u) and n2 inline Vector3& SliderJointComponents::getR1PlusUCrossN2(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR1PlusUCrossN2[mMapEntityToComponentIndex[jointEntity]]; } // Set the cross product of vector (r1 + u) and n2 inline void SliderJointComponents::setR1PlusUCrossN2(Entity jointEntity, const Vector3& r1PlusUCrossN2) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR1PlusUCrossN2[mMapEntityToComponentIndex[jointEntity]] = r1PlusUCrossN2; } // Return the cross product of vector (r1 + u) and the slider axis inline Vector3& SliderJointComponents::getR1PlusUCrossSliderAxis(Entity jointEntity) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); return mR1PlusUCrossSliderAxis[mMapEntityToComponentIndex[jointEntity]]; } // Set the cross product of vector (r1 + u) and the slider axis inline void SliderJointComponents::setR1PlusUCrossSliderAxis(Entity jointEntity, const Vector3& r1PlusUCrossSliderAxis) { assert(mMapEntityToComponentIndex.containsKey(jointEntity)); mR1PlusUCrossSliderAxis[mMapEntityToComponentIndex[jointEntity]] = r1PlusUCrossSliderAxis; } } #endif