#extension GL_EXT_samplerless_texture_functions : require #extension GL_EXT_nonuniform_qualifier : enable #define MAX_TEXTURES TEXTURES #include "../common/macros.h" layout (constant_id = 0) const uint TEXTURES = 512; layout (constant_id = 1) const uint CUBEMAPS = 128; #if VXGI layout (constant_id = 2) const uint CASCADES = 16; #endif #if !MULTISAMPLING layout (input_attachment_index = 0, binding = 0) uniform usubpassInput samplerId; layout (input_attachment_index = 1, binding = 1) uniform subpassInput samplerNormal; #if DEFERRED_SAMPLING layout (input_attachment_index = 2, binding = 2) uniform subpassInput samplerUv; #else layout (input_attachment_index = 2, binding = 2) uniform subpassInput samplerAlbedo; #endif layout (input_attachment_index = 3, binding = 3) uniform subpassInput samplerDepth; #else layout (input_attachment_index = 0, binding = 0) uniform usubpassInputMS samplerId; layout (input_attachment_index = 1, binding = 1) uniform subpassInputMS samplerNormal; #if DEFERRED_SAMPLING layout (input_attachment_index = 2, binding = 2) uniform subpassInputMS samplerUv; #else layout (input_attachment_index = 2, binding = 2) uniform subpassInputMS samplerAlbedo; #endif layout (input_attachment_index = 3, binding = 3) uniform subpassInputMS samplerDepth; #endif #include "../common/structs.h" layout (binding = 4) uniform UBO { Matrices matrices; Mode mode; Fog fog; uint lights; uint materials; uint textures; uint drawCalls; vec3 ambient; float gamma; float exposure; uint msaa; uint shadowSamples; float cascadePower; uint indexSkybox; uint vxgiShadowSamples; float pointLightEyeDepthScale; uint padding2; } ubo; layout (std140, binding = 5) readonly buffer Lights { Light lights[]; }; layout (std140, binding = 6) readonly buffer Materials { Material materials[]; }; layout (std140, binding = 7) readonly buffer Textures { Texture textures[]; }; layout (std140, binding = 8) readonly buffer DrawCalls { DrawCall drawCalls[]; }; layout (binding = 9) uniform sampler2D samplerTextures[TEXTURES]; layout (binding = 10) uniform samplerCube samplerCubemaps[CUBEMAPS]; layout (binding = 11) uniform sampler3D samplerNoise; #if VXGI layout (binding = 12) uniform usampler3D voxelId[CASCADES]; layout (binding = 13) uniform sampler3D voxelUv[CASCADES]; layout (binding = 14) uniform sampler3D voxelNormal[CASCADES]; layout (binding = 15) uniform sampler3D voxelRadiance[CASCADES]; #endif layout (location = 0) in vec2 inUv; layout (location = 1) in flat uint inPushConstantPass; layout (location = 0) out vec4 outFragColor; layout (location = 1) out vec4 outDebugColor; #include "../common/functions.h" #include "../common/fog.h" #include "../common/pbr.h" #include "../common/shadows.h" #if VXGI #include "../common/vxgi.h" #endif void postProcess() { #if FOG fog( surface.ray, surface.fragment.rgb, surface.fragment.a ); #endif #if TONE_MAP surface.fragment.rgb = vec3(1.0) - exp(-surface.fragment.rgb * ubo.exposure); #endif #if GAMMA_CORRECT surface.fragment.rgb = pow(surface.fragment.rgb, vec3(1.0 / ubo.gamma)); #endif #if WHITENOISE if ( (ubo.mode.type & (0x1 << 1)) == (0x1 << 1) ) whitenoise(surface.fragment.rgb, ubo.mode.parameters); #endif outFragColor = vec4(surface.fragment.rgb,1); } void populateSurface() { surface.pass = inPushConstantPass; { #if !MULTISAMPLING const float depth = subpassLoad(samplerDepth).r; #else const float depth = resolve(samplerDepth, ubo.msaa).r; #endif vec4 positionEye = ubo.matrices.iProjection[surface.pass] * vec4(inUv * 2.0 - 1.0, depth, 1.0); positionEye /= positionEye.w; surface.position.eye = positionEye.xyz; surface.position.world = vec3( ubo.matrices.iView[surface.pass] * positionEye ); } #if 0 { const vec4 near4 = ubo.matrices.iProjectionView[surface.pass] * (vec4(2.0 * inUv - 1.0, -1.0, 1.0)); const vec4 far4 = ubo.matrices.iProjectionView[surface.pass] * (vec4(2.0 * inUv - 1.0, 1.0, 1.0)); const vec3 near3 = near4.xyz / near4.w; const vec3 far3 = far4.xyz / far4.w; surface.ray.origin = near3; surface.ray.direction = normalize( far3 - near3 ); } // separate our ray direction due to floating point precision problems { const mat4 iProjectionView = inverse( ubo.matrices.projection[surface.pass] * mat4(mat3(ubo.matrices.view[surface.pass])) ); const vec4 near4 = iProjectionView * (vec4(2.0 * inUv - 1.0, -1.0, 1.0)); const vec4 far4 = iProjectionView * (vec4(2.0 * inUv - 1.0, 1.0, 1.0)); const vec3 near3 = near4.xyz / near4.w; const vec3 far3 = far4.xyz / far4.w; surface.ray.direction = normalize( far3 - near3 ); } #else { const mat4 iProjectionView = inverse( ubo.matrices.projection[surface.pass] * mat4(mat3(ubo.matrices.view[surface.pass])) ); const vec4 near4 = iProjectionView * (vec4(2.0 * inUv - 1.0, -1.0, 1.0)); const vec4 far4 = iProjectionView * (vec4(2.0 * inUv - 1.0, 1.0, 1.0)); const vec3 near3 = near4.xyz / near4.w; const vec3 far3 = far4.xyz / far4.w; surface.ray.direction = normalize( far3 - near3 ); surface.ray.origin = ubo.matrices.eyePos[surface.pass].xyz; } #endif #if !MULTISAMPLING surface.normal.world = decodeNormals( subpassLoad(samplerNormal).xy ); const uvec2 ID = subpassLoad(samplerId).xy; #else surface.normal.world = decodeNormals( resolve(samplerNormal, ubo.msaa).xy ); const uvec2 ID = subpassLoad(samplerId, 0).xy; //resolve(samplerId, ubo.msaa).xy; #endif surface.normal.eye = vec3( ubo.matrices.view[surface.pass] * vec4(surface.normal.world, 0.0) ); if ( ID.x == 0 || ID.y == 0 ) { surface.fragment.rgb = texture( samplerCubemaps[ubo.indexSkybox], surface.ray.direction ).rgb; surface.fragment.a = 0.0; postProcess(); return; } const uint drawId = ID.x - 1; const DrawCall drawCall = drawCalls[drawId]; surface.material.id = ID.y + drawCall.materialIndex - 1; const Material material = materials[surface.material.id]; surface.material.albedo = material.colorBase; surface.fragment = material.colorEmissive; #if DEFERRED_SAMPLING #if !MULTISAMPLING surface.uv = subpassLoad(samplerUv).xy; #else surface.uv = resolve(samplerUv, ubo.msaa).xy; #endif const float mip = mipLevel(inUv.xy); const bool useAtlas = validTextureIndex( drawCall.textureIndex + material.indexAtlas ); Texture textureAtlas; if ( useAtlas ) textureAtlas = textures[drawCall.textureIndex + material.indexAtlas]; if ( validTextureIndex( drawCall.textureIndex + material.indexAlbedo ) ) { const Texture t = textures[drawCall.textureIndex + material.indexAlbedo]; surface.material.albedo = textureLod( samplerTextures[nonuniformEXT((useAtlas)?textureAtlas.index:t.index)], ( useAtlas ) ? mix( t.lerp.xy, t.lerp.zw, surface.uv ) : surface.uv, mip ); } // OPAQUE if ( material.modeAlpha == 0 ) { surface.material.albedo.a = 1; // BLEND } else if ( material.modeAlpha == 1 ) { // MASK } else if ( material.modeAlpha == 2 ) { } // Emissive textures if ( validTextureIndex( drawCall.textureIndex + material.indexEmissive ) ) { const Texture t = textures[drawCall.textureIndex + material.indexEmissive]; surface.fragment += textureLod( samplerTextures[nonuniformEXT((useAtlas)?textureAtlas.index:t.index)], ( useAtlas ) ? mix( t.lerp.xy, t.lerp.zw, surface.uv ) : surface.uv, mip ); } #else #if !MULTISAMPLING surface.material.albedo = subpassLoad(samplerAlbedo); #else surface.material.albedo = resolve(samplerAlbedo, ubo.msaa); #endif #endif surface.material.metallic = material.factorMetallic; surface.material.roughness = material.factorRoughness; surface.material.occlusion = material.factorOcclusion; surface.material.indexLightmap = material.indexLightmap; } void directLighting() { const vec3 ambient = ubo.ambient.rgb * surface.material.occlusion + surface.material.indirect.rgb; surface.fragment.rgb += (0 <= surface.material.indexLightmap) ? (surface.material.albedo.rgb + ambient) : (surface.material.albedo.rgb * ambient); #if PBR pbr(); #elif LAMBERT lambert(); #elif PHONG phong(); #endif }