#include "behavior.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../light/behavior.h" #include "../voxelizer/behavior.h" #include "../../ext.h" #include "../../gui/gui.h" UF_BEHAVIOR_REGISTER_CPP(ext::ExtSceneBehavior) UF_BEHAVIOR_TRAITS_CPP(ext::ExtSceneBehavior, ticks = true, renders = false, multithread = false) #define this ((uf::Scene*) &self) void ext::ExtSceneBehavior::initialize( uf::Object& self ) { auto& assetLoader = this->getComponent(); auto& metadata = this->getComponent(); auto& metadataJson = this->getComponent(); this->addHook( "system:Quit.%UID%", [&](ext::json::Value& payload){ ext::ready = false; }); this->addHook( "asset:Load.%UID%", [&](pod::payloads::assetLoad& payload){ if ( !uf::Asset::isExpected( payload, uf::Asset::Type::AUDIO ) ) return; if ( !assetLoader.has(payload.filename) ) return; auto& asset = assetLoader.get(payload.filename); auto& audio = this->getComponent(); audio.destroy(); audio = std::move(asset); assetLoader.remove(payload.filename); #if UF_AUDIO_MAPPED_VOLUMES audio.setVolume(uf::audio::volumes.count("bgm") > 0 ? uf::audio::volumes.at("bgm") : 1.0); #else audio.setVolume(uf::audio::volumes::bgm); #endif audio.loop( true ); audio.play(); }); this->addHook( "menu:Open", [&](pod::payloads::menuOpen& payload){ TIMER(1, true && ) { uf::Object* manager = (uf::Object*) this->globalFindByName("Gui Manager"); if ( !manager ) return; uf::stl::string key = payload.name; uf::Object& gui = manager->loadChild(metadataJson["menus"][key].as("/entites/gui/"+key+"/menu.json"), false); uf::Serializer& metadataJson = gui.getComponent(); gui.initialize(); }; /* static uf::Timer timer(false); if ( !timer.running() ) timer.start( uf::Time<>(-1000000) ); if ( timer.elapsed().asDouble() < 1 ) return; timer.reset(); uf::Object* manager = (uf::Object*) this->globalFindByName("Gui Manager"); if ( !manager ) return; ext::json::Value payload; uf::stl::string config = metadataJson["menus"]["pause"].as("/entites/gui/pause/menu.json"); uf::Object& gui = manager->loadChild(config, false); payload["uid"] = gui.getUid(); uf::Serializer& metadataJson = gui.getComponent(); metadataJson["menu"] = payload.menu; gui.initialize(); */ }); this->addHook( "world:Entity.LoadAsset", [&](pod::payloads::assetLoad& payload){ assetLoader.load("asset:Load." + std::to_string(payload.uid), payload); }); this->addHook( "shader:Update.%UID%", [&](ext::json::Value& json){ metadata.shader.mode = json["mode"].as(); metadata.shader.scalar = json["scalar"].as(); metadata.shader.parameters = uf::vector::decode( json["parameters"], metadata.shader.parameters ); ext::json::forEach( metadataJson["system"]["renderer"]["shader"]["parameters"], [&]( uint32_t i, const ext::json::Value& value ){ if ( value.as() == "time" ) metadata.shader.time = i; }); if ( 0 <= metadata.shader.time && metadata.shader.time < 4 ) { metadata.shader.parameters[metadata.shader.time] = uf::physics::time::current; } }); /* store viewport size */ this->addHook( "window:Resized", [&](pod::payloads::windowResized& payload){ ext::gui::size.current = payload.window.size; }); // lock control { pod::payloads::windowMouseCursorVisibility payload; payload.mouse.visible = false; uf::hooks.call("window:Mouse.CursorVisibility", payload); uf::hooks.call("window:Mouse.Lock"); } auto& sceneTextures = this->getComponent(); // initialize perlin noise #if UF_USE_VULKAN { auto& texture = sceneTextures.noise; //this->getComponent(); texture.sampler.descriptor.addressMode = { uf::renderer::enums::AddressMode::MIRRORED_REPEAT, uf::renderer::enums::AddressMode::MIRRORED_REPEAT, uf::renderer::enums::AddressMode::MIRRORED_REPEAT }; auto& noiseGenerator = this->getComponent(); noiseGenerator.seed(rand()); float high = std::numeric_limits::min(); float low = std::numeric_limits::max(); float amplitude = metadataJson["noise"]["amplitude"].is() ? metadataJson["noise"]["amplitude"].as() : 1.5; pod::Vector3ui size = uf::vector::decode(metadataJson["noise"]["size"], pod::Vector3ui{64, 64, 64}); pod::Vector3d coefficients = uf::vector::decode(metadataJson["noise"]["coefficients"], pod::Vector3d{3.0, 3.0, 3.0}); uf::stl::vector pixels(size.x * size.y * size.z); uf::stl::vector perlins(size.x * size.y * size.z); #pragma omp parallel for for ( uint32_t z = 0; z < size.z; ++z ) { for ( uint32_t y = 0; y < size.y; ++y ) { for ( uint32_t x = 0; x < size.x; ++x ) { float nx = (float) x / (float) size.x; float ny = (float) y / (float) size.y; float nz = (float) z / (float) size.z; float n = amplitude * noiseGenerator.noise(coefficients.x * nx, coefficients.y * ny, coefficients.z * nz); high = std::max( high, n ); low = std::min( low, n ); perlins[x + y * size.x + z * size.x * size.y] = n; } } } for ( uint32_t i = 0; i < perlins.size(); ++i ) { float n = perlins[i]; n = n - floor(n); float normalized = (n - low) / (high - low); if ( normalized >= 1.0f ) normalized = 1.0f; pixels[i] = static_cast(floor(normalized * 255)); } texture.fromBuffers( (void*) pixels.data(), pixels.size(), uf::renderer::enums::Format::R8_UNORM, size.x, size.y, size.z, 1 ); } // initialize cubemap { uf::stl::vector filenames = { uf::io::root+"/textures/skybox/front.png", uf::io::root+"/textures/skybox/back.png", uf::io::root+"/textures/skybox/up.png", uf::io::root+"/textures/skybox/down.png", uf::io::root+"/textures/skybox/right.png", uf::io::root+"/textures/skybox/left.png", }; uf::Image::container_t pixels; uf::stl::vector images(filenames.size()); pod::Vector2ui size = {0,0}; auto& texture = sceneTextures.skybox; for ( uint32_t i = 0; i < filenames.size(); ++i ) { auto& filename = filenames[i]; auto& image = images[i]; image.open(filename); image.flip(); if ( size.x == 0 && size.y == 0 ) size = image.getDimensions(); else if ( size != image.getDimensions() ) UF_EXCEPTION("ERROR: MISMATCH CUBEMAP FACE SIZE"); auto& p = image.getPixels(); pixels.reserve( pixels.size() + p.size() ); pixels.insert( pixels.end(), p.begin(), p.end() ); } texture.mips = 0; texture.fromBuffers( (void*) pixels.data(), pixels.size(), uf::renderer::enums::Format::R8G8B8A8_UNORM, size.x, size.y, 1, filenames.size() ); } #endif this->addHook( "object:Serialize.%UID%", [&](ext::json::Value& json){ metadata.serialize(self, metadataJson); }); this->addHook( "object:Deserialize.%UID%", [&](ext::json::Value& json){ metadata.deserialize(self, metadataJson); }); metadata.deserialize(self, metadataJson); } void ext::ExtSceneBehavior::tick( uf::Object& self ) { auto& assetLoader = this->getComponent(); assetLoader.processQueue(); auto& metadata = this->getComponent(); auto& metadataJson = this->getComponent(); #if 1 uf::hooks.call("game:Frame.Start"); /* Print World Tree */ { TIMER(1, uf::inputs::kbm::states::U && ) { std::function filter = []( uf::Entity* entity, int indent ) { for ( int i = 0; i < indent; ++i ) uf::iostream << "\t"; uf::iostream << uf::string::toString(entity->as()) << " "; if ( entity->hasComponent>() ) { pod::Transform<> t = uf::transform::flatten(entity->getComponent>()); uf::iostream << uf::string::toString(t.position) << " " << uf::string::toString(t.orientation); } uf::iostream << "\n"; }; for ( uf::Scene* scene : uf::scene::scenes ) { if ( !scene ) continue; uf::iostream << "Scene: " << scene->getName() << ": " << scene << "\n"; scene->process(filter, 1); } } } #endif #if 0 /* Print World Tree */ { TIMER(1, uf::inputs::kbm::states::U && false && ) { std::function filter = []( uf::Entity* entity, int indent ) { for ( int i = 0; i < indent; ++i ) uf::iostream << "\t"; uf::iostream << uf::string::toString(entity->as()) << " ["; for ( auto& behavior : entity->getBehaviors() ) { uf::iostream << uf::instantiator::behaviors->names[behavior.type] << ", "; } uf::iostream << "]\n"; }; for ( uf::Scene* scene : uf::scene::scenes ) { if ( !scene ) continue; uf::iostream << "Scene: " << scene->getName() << ": " << scene << "\n"; scene->process(filter, 1); } uf::Serializer instantiator; { int i = 0; for ( auto& pair : uf::instantiator::objects->names ) { instantiator["objects"][i++] = pair.second; } } { int i = 0; for ( auto& pair : uf::instantiator::behaviors->names ) { instantiator["behaviors"][i++] = pair.second; } } uf::iostream << instantiator << "\n"; } } #endif #if UF_USE_OPENAL /* check if audio needs to loop */ { auto& audio = this->getComponent(); if ( !audio.playing() ) audio.play(); } /* Updates Sound Listener */ { auto& controller = this->getController(); // copy pod::Transform<> transform = controller.getComponent>(); if ( controller.hasComponent() ) { auto& camera = controller.getComponent(); transform.position += camera.getTransform().position; transform = uf::transform::reorient( transform ); } transform.forward *= -1; ext::al::listener( transform ); } #if 0 /* check if audio needs to loop */ { auto& bgm = this->getComponent(); float current = bgm.getTime(); float end = bgm.getDuration(); float epsilon = 0.005f; if ( (current + epsilon >= end || !bgm.playing()) && !bgm.loops() ) { // intro to main transition uf::stl::string filename = bgm.getFilename(); filename = assetLoader.getOriginal(filename); if ( filename.find("_intro") != uf::stl::string::npos ) { assetLoader.load(uf::string::replace( filename, "_intro", "" ), this->formatHookName("asset:Load.%UID%")); // loop } else { bgm.setTime(0); if ( !bgm.playing() ) bgm.play(); } } } #endif #endif #if !UF_ENV_DREAMCAST /* Regain control if nothing requests it */ { pod::payloads::windowMouseCursorVisibility payload; payload.mouse.visible = this->globalFindByName("Gui: Menu"); if ( !payload.mouse.visible ) uf::hooks.call("window:Mouse.Lock"); uf::hooks.call("window:Mouse.CursorVisibility", payload); } #endif #if UF_ENTITY_METADATA_USE_JSON metadata.deserialize(self, metadataJson); #else if ( 0 <= metadata.shader.time && metadata.shader.time < 4 ) { metadata.shader.parameters[metadata.shader.time] = uf::physics::time::current; } #endif #if UF_USE_VULKAN { auto& graph = this->getGraph(); auto& controller = this->getController(); auto& camera = controller.getComponent(); auto& controllerMetadata = controller.getComponent(); auto& controllerTransform = controller.getComponent>(); auto& metadata = this->getComponent(); auto& metadataVxgi = this->getComponent(); auto& metadataJson = this->getComponent(); struct LightInfo { uf::Entity* entity = NULL; pod::Vector3f position = {0,0,0}; float range = 0.0f; pod::Vector3f color = {0,0,0}; float intensity = 0.0f; float distance = 0; float bias = 0; int32_t type = 0; bool shadows = false; }; uf::stl::vector entities; entities.reserve(graph.size() / 2); uf::graph::storage.lights.clear(); uf::graph::storage.lights.reserve(metadata.light.max); uf::graph::storage.shadow2Ds.clear(); uf::graph::storage.shadow2Ds.reserve(metadata.light.max); uf::graph::storage.shadowCubes.clear(); uf::graph::storage.shadowCubes.reserve(metadata.light.max); // traverse scene graph for ( auto entity : graph ) { // ignore this scene, our controller, and anything that isn't actually a light if ( entity == this || entity == &controller || !entity->hasComponent() ) continue; auto& metadata = entity->getComponent(); // disables shadow mappers that activate when in range bool hasRT = entity->hasComponent(); if ( hasRT ) { auto& renderMode = entity->getComponent(); if ( metadata.renderer.mode == "in-range" ) renderMode.execute = false; } if ( metadata.power <= 0 ) continue; auto flatten = uf::transform::flatten( entity->getComponent>() ); LightInfo& info = entities.emplace_back(LightInfo{ .entity = entity, .position = flatten.position, .range = 0, .color = pod::Vector4f{ metadata.color.x, metadata.color.y, metadata.color.z }, .intensity = metadata.power, .distance = uf::vector::magnitude( uf::vector::subtract( flatten.position, controllerTransform.position ) ), .bias = metadata.bias, .type = metadata.type, .shadows = metadata.shadows && hasRT, }); } // prioritize closer lights; it would be nice to also prioritize lights in view, but because of VXGI it's not really something to do std::sort( entities.begin(), entities.end(), [&]( LightInfo& l, LightInfo& r ){ return l.distance < r.distance; }); int32_t shadowUpdateThreshold = metadata.shadow.update; // how many shadow maps we should update, based on range int32_t shadowCount = metadata.shadow.max; // how many shadow maps we should pass, based on range if ( shadowCount <= 0 ) shadowCount = std::numeric_limits::max(); // disable shadows if that light is outside our threshold for ( auto& info : entities ) if ( info.shadows && shadowCount-- <= 0 ) info.shadows = false; // bind lighting and requested shadow maps for ( uint32_t i = 0; i < entities.size() && uf::graph::storage.lights.size() < metadata.light.max; ++i ) { auto& info = entities[i]; uf::Entity* entity = info.entity; if ( !info.shadows ) { uf::graph::storage.lights.emplace_back(pod::Light{ .view = uf::matrix::identity(), .projection = uf::matrix::identity(), .position = info.position, .range = info.range, .color = info.color, .intensity = info.intensity, .type = info.type, .typeMap = 0, .indexMap = -1, .depthBias = info.bias, }); } else { auto& renderMode = entity->getComponent(); auto& lightCamera = entity->getComponent(); auto& lightMetadata = entity->getComponent(); lightMetadata.renderer.rendered = true; // activate our shadow mapper if it's range-basedd if ( lightMetadata.renderer.mode == "in-range" && shadowUpdateThreshold-- > 0 ) renderMode.execute = true; // if point light, and combining is requested if ( metadata.shadow.experimentalMode > 0 && renderMode.renderTarget.views == 6 ) { int32_t index = -1; // separated texture2Ds if ( metadata.shadow.experimentalMode == 2 ) { index = uf::graph::storage.shadow2Ds.size(); for ( auto& attachment : renderMode.renderTarget.attachments ) { if ( !(attachment.descriptor.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ) continue; for ( size_t view = 0; view < renderMode.renderTarget.views; ++view ) { uf::graph::storage.shadow2Ds.emplace_back().aliasAttachment(attachment, view); } break; } // cubemapped } else { index = uf::graph::storage.shadowCubes.size(); for ( auto& attachment : renderMode.renderTarget.attachments ) { if ( !(attachment.descriptor.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ) continue; uf::graph::storage.shadowCubes.emplace_back().aliasAttachment(attachment); break; } } uf::graph::storage.lights.emplace_back(pod::Light{ .view = lightCamera.getView(0), .projection = lightCamera.getProjection(0), .position = info.position, .range = info.range, .color = info.color, .intensity = info.intensity, .type = info.type, .typeMap = metadata.shadow.experimentalMode, .indexMap = index, .depthBias = info.bias, }); // any other shadowing light, even point lights, are split by shadow maps } else { for ( auto& attachment : renderMode.renderTarget.attachments ) { if ( !(attachment.descriptor.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ) continue; if ( attachment.descriptor.layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR ) continue; for ( size_t view = 0; view < renderMode.renderTarget.views; ++view ) { uf::graph::storage.lights.emplace_back(pod::Light{ .view = lightCamera.getView(view), .projection = lightCamera.getProjection(view), .position = info.position, .range = info.range, .color = info.color, .intensity = info.intensity, .type = info.type, .typeMap = 0, .indexMap = uf::graph::storage.shadow2Ds.size(), .depthBias = info.bias, }); uf::graph::storage.shadow2Ds.emplace_back().aliasAttachment(attachment, view); } } } } } uf::graph::storage.buffers.light.update( (const void*) uf::graph::storage.lights.data(), uf::graph::storage.lights.size() * sizeof(pod::Light) ); } #endif /* Update lights */ if ( !uf::renderer::settings::experimental::vxgi ) { ext::ExtSceneBehavior::bindBuffers( *this ); } } void ext::ExtSceneBehavior::render( uf::Object& self ) {} void ext::ExtSceneBehavior::destroy( uf::Object& self ) { if ( this->hasComponent() ) { auto& sceneTextures = this->getComponent(); for ( auto& t : sceneTextures.voxels.id ) t.destroy(); sceneTextures.voxels.id.clear(); for ( auto& t : sceneTextures.voxels.normal ) t.destroy(); sceneTextures.voxels.normal.clear(); for ( auto& t : sceneTextures.voxels.uv ) t.destroy(); sceneTextures.voxels.uv.clear(); for ( auto& t : sceneTextures.voxels.radiance ) t.destroy(); sceneTextures.voxels.radiance.clear(); for ( auto& t : sceneTextures.voxels.depth ) t.destroy(); sceneTextures.voxels.depth.clear(); sceneTextures.noise.destroy(); sceneTextures.skybox.destroy(); } } void ext::ExtSceneBehavior::Metadata::serialize( uf::Object& self, uf::Serializer& serializer ) { serializer["light"]["should"] = /*this->*/light.enabled; serializer["light"]["ambient"] = uf::vector::encode( /*this->*/light.ambient ); serializer["light"]["specular"] = uf::vector::encode( /*this->*/light.specular ); serializer["light"]["exposure"] = /*this->*/light.exposure; serializer["light"]["gamma"] = /*this->*/light.gamma; serializer["light"]["brightnessThreshold"] = /*this->*/light.brightnessThreshold; serializer["light"]["fog"]["color"] = uf::vector::encode( /*this->*/fog.color ); serializer["light"]["fog"]["step scale"] = /*this->*/fog.stepScale; serializer["light"]["fog"]["absorbtion"] = /*this->*/fog.absorbtion; serializer["light"]["fog"]["range"] = uf::vector::encode( /*this->*/fog.range ); serializer["light"]["fog"]["density"]["offset"] = uf::vector::encode( /*this->*/fog.density.offset ); serializer["light"]["fog"]["density"]["timescale"] = /*this->*/fog.density.timescale; serializer["light"]["fog"]["density"]["threshold"] = /*this->*/fog.density.threshold; serializer["light"]["fog"]["density"]["multiplier"] = /*this->*/fog.density.multiplier; serializer["light"]["fog"]["density"]["scale"] = /*this->*/fog.density.scale; serializer["system"]["renderer"]["shader"]["mode"] = /*this->*/shader.mode; serializer["system"]["renderer"]["shader"]["scalar"] = /*this->*/shader.scalar; serializer["system"]["renderer"]["shader"]["parameters"] = uf::vector::encode( /*this->*/shader.parameters ); } void ext::ExtSceneBehavior::Metadata::deserialize( uf::Object& self, uf::Serializer& serializer ) { /*this->*/max.textures2D = ext::config["engine"]["scenes"]["textures"]["max"]["2D"].as(/*this->*/max.textures2D); /*this->*/max.texturesCube = ext::config["engine"]["scenes"]["textures"]["max"]["cube"].as(/*this->*/max.texturesCube); /*this->*/max.textures3D = ext::config["engine"]["scenes"]["textures"]["max"]["3D"].as(/*this->*/max.textures3D); /*this->*/shadow.enabled = ext::config["engine"]["scenes"]["shadows"]["enabled"].as(true) && serializer["light"]["shadows"].as(true); /*this->*/shadow.samples = ext::config["engine"]["scenes"]["shadows"]["samples"].as(); /*this->*/shadow.max = ext::config["engine"]["scenes"]["shadows"]["max"].as(); /*this->*/shadow.update = ext::config["engine"]["scenes"]["shadows"]["update"].as(); /*this->*/shadow.experimentalMode = ext::config["engine"]["scenes"]["shadows"]["experimental mode"].as(0); /*this->*/light.enabled = ext::config["engine"]["scenes"]["lights"]["enabled"].as(true) && serializer["light"]["should"].as(true); /*this->*/light.max = ext::config["engine"]["scenes"]["lights"]["max"].as(/*this->*/light.max); /*this->*/light.ambient = uf::vector::decode( serializer["light"]["ambient"], pod::Vector4f{ 1, 1, 1, 1 } ); /*this->*/light.specular = uf::vector::decode( serializer["light"]["specular"], pod::Vector4f{ 1, 1, 1, 1 } ); /*this->*/light.exposure = serializer["light"]["exposure"].as(1.0f); /*this->*/light.gamma = serializer["light"]["gamma"].as(2.2f); /*this->*/light.brightnessThreshold = serializer["light"]["brightnessThreshold"].as(ext::config["engine"]["scenes"]["bloom"]["brightnessThreshold"].as(1.0f)); /*this->*/bloom.scale = serializer["bloom"]["scale"].as(ext::config["engine"]["scenes"]["bloom"]["scale"].as(bloom.scale)); /*this->*/bloom.strength = serializer["bloom"]["strength"].as(ext::config["engine"]["scenes"]["bloom"]["strength"].as(bloom.strength)); /*this->*/bloom.sigma = serializer["bloom"]["sigma"].as(ext::config["engine"]["scenes"]["bloom"]["sigma"].as(bloom.sigma)); /*this->*/bloom.samples = serializer["bloom"]["samples"].as(ext::config["engine"]["scenes"]["bloom"]["samples"].as(bloom.samples)); /*this->*/fog.color = uf::vector::decode( serializer["light"]["fog"]["color"], pod::Vector3f{ 1, 1, 1 } ); /*this->*/fog.stepScale = serializer["light"]["fog"]["step scale"].as(); /*this->*/fog.absorbtion = serializer["light"]["fog"]["absorbtion"].as(); /*this->*/fog.range = uf::vector::decode( serializer["light"]["fog"]["range"], pod::Vector2f{ 0, 0 } ); /*this->*/fog.density.offset = uf::vector::decode( serializer["light"]["fog"]["density"]["offset"], pod::Vector4f{ 0, 0, 0, 0 } ); /*this->*/fog.density.timescale = serializer["light"]["fog"]["density"]["timescale"].as(); /*this->*/fog.density.threshold = serializer["light"]["fog"]["density"]["threshold"].as(); /*this->*/fog.density.multiplier = serializer["light"]["fog"]["density"]["multiplier"].as(); /*this->*/fog.density.scale = serializer["light"]["fog"]["density"]["scale"].as(); /*this->*/shader.mode = serializer["system"]["renderer"]["shader"]["mode"].as(); /*this->*/shader.scalar = serializer["system"]["renderer"]["shader"]["scalar"].as(); /*this->*/shader.parameters = uf::vector::decode( serializer["system"]["renderer"]["shader"]["parameters"], pod::Vector4f{0,0,0,0} ); ext::json::forEach( serializer["system"]["renderer"]["shader"]["parameters"], [&]( uint32_t i, const ext::json::Value& value ){ if ( value.as() == "time" ) /*this->*/shader.time = i; }); if ( 0 <= /*this->*/shader.time && /*this->*/shader.time < 4 ) { /*this->*/shader.parameters[/*this->*/shader.time] = uf::physics::time::current; } #if UF_USE_OPENGL_FIXED_FUNCTION uf::renderer::states::rebuild = true; #endif if ( uf::renderer::settings::experimental::bloom ) { auto& renderMode = uf::renderer::getRenderMode("", true); auto& blitter = *renderMode.getBlitters().front(); auto& shader = blitter.material.getShader("compute", "bloom"); struct UniformDescriptor { float scale; float strength; float threshold; float sigma; float gamma; float exposure; uint32_t samples; uint32_t padding; }; UniformDescriptor uniforms = { .scale = bloom.scale, .strength = bloom.strength, .threshold = light.brightnessThreshold, .sigma = bloom.sigma, .gamma = light.gamma, .exposure = light.exposure, .samples = bloom.samples, }; shader.updateBuffer( uniforms, shader.getUniformBuffer("UBO") ); } } void ext::ExtSceneBehavior::bindBuffers( uf::Object& self, const uf::stl::string& renderModeName, bool isCompute ) { auto& graph = this->getGraph(); auto& controller = this->getController(); auto& camera = controller.getComponent(); auto& controllerMetadata = controller.getComponent(); auto& controllerTransform = controller.getComponent>(); auto& metadata = this->getComponent(); auto& metadataVxgi = this->getComponent(); auto& metadataJson = this->getComponent(); auto& renderMode = uf::renderer::getRenderMode(renderModeName, true); auto blitters = renderMode.getBlitters(); #if UF_USE_OPENGL struct LightInfo { uf::Entity* entity = NULL; pod::Vector3f position = {0,0,0}; float w = 1; // OpenGL requires a W pod::Vector4f color = {0,0,0,1}; // OpenGL requires an alpha float distance = 0; float power = 0; }; uf::stl::vector entities; for ( auto entity : graph ) { if ( entity == this || entity == &controller || !entity->hasComponent() ) continue; auto& metadata = entity->getComponent(); if ( metadata.power <= 0 ) continue; auto flatten = uf::transform::flatten( entity->getComponent>() ); LightInfo& info = entities.emplace_back(LightInfo{ .entity = entity, .position = flatten.position, .w = 1, .color = metadata.color, .distance = uf::vector::magnitude( uf::vector::subtract( flatten.position, controllerTransform.position ) ), .power = metadata.power, }); } std::sort( entities.begin(), entities.end(), [&]( LightInfo& l, LightInfo& r ){ return l.distance < r.distance; }); static GLint glMaxLights = 0; if ( !glMaxLights ) glGetIntegerv(GL_MAX_LIGHTS, &glMaxLights); metadata.light.max = std::min( (uint32_t) glMaxLights, metadata.light.max ); // add lighting { uint32_t i = 0; for ( ; i < entities.size() && i < metadata.light.max; ++i ) { auto& info = entities[i]; uf::Entity* entity = info.entity; GLenum target = GL_LIGHT0+i; GL_ERROR_CHECK(glEnable(target)); GL_ERROR_CHECK(glLightfv(target, GL_AMBIENT, &metadata.light.ambient[0])); GL_ERROR_CHECK(glLightfv(target, GL_SPECULAR, &metadata.light.specular[0])); GL_ERROR_CHECK(glLightfv(target, GL_DIFFUSE, &info.color[0])); GL_ERROR_CHECK(glLightfv(target, GL_POSITION, &info.position[0])); GL_ERROR_CHECK(glLightf(target, GL_CONSTANT_ATTENUATION, 0.0f)); GL_ERROR_CHECK(glLightf(target, GL_LINEAR_ATTENUATION, 0)); GL_ERROR_CHECK(glLightf(target, GL_QUADRATIC_ATTENUATION, 1.0f / info.power)); } for ( ; i < metadata.light.max; ++i ) GL_ERROR_CHECK(glDisable(GL_LIGHT0+i)); } #elif UF_USE_VULKAN struct UniformDescriptor { struct Matrices { alignas(16) pod::Matrix4f view; alignas(16) pod::Matrix4f projection; alignas(16) pod::Matrix4f iView; alignas(16) pod::Matrix4f iProjection; alignas(16) pod::Matrix4f iProjectionView; alignas(16) pod::Vector4f eyePos; } matrices[2]; struct Mode { alignas(4) uint8_t mode; alignas(4) uint8_t scalar; alignas(8) pod::Vector2ui padding; alignas(16) pod::Vector4f parameters; } mode; struct Fog { pod::Vector3f color; alignas(4) float stepScale; pod::Vector3f offset; alignas(4) float densityScale; alignas(8) pod::Vector2f range; alignas(4) float densityThreshold; alignas(4) float densityMultiplier; alignas(4) float absorbtion; alignas(4) float padding1; alignas(4) float padding2; alignas(4) float padding3; } fog; struct VXGI { alignas(16) pod::Matrix4f matrix; alignas(4) float cascadePower; alignas(4) float granularity; alignas(4) uint32_t shadows; alignas(4) uint32_t padding1; } vxgi; struct Lengths { alignas(4) uint32_t lights = 0; alignas(4) uint32_t materials = 0; alignas(4) uint32_t textures = 0; alignas(4) uint32_t drawCommands = 0; } lengths; pod::Vector3f ambient; alignas(4) float gamma; alignas(4) float exposure; alignas(4) float brightnessThreshold; alignas(4) uint32_t msaa; alignas(4) uint32_t shadowSamples; alignas(4) uint32_t indexSkybox; alignas(4) uint32_t padding1; alignas(4) uint32_t padding2; alignas(4) uint32_t padding3; }; // struct that contains our skybox cubemap, noise texture, and VXGI voxels auto& sceneTextures = this->getComponent(); uf::stl::vector textures2D; textures2D.reserve( metadata.max.textures2D ); uf::stl::vector textures3D; textures3D.reserve( metadata.max.textures3D ); uf::stl::vector texturesCube; texturesCube.reserve( metadata.max.texturesCube ); // bind scene textures for ( auto& key : uf::graph::storage.texture2Ds.keys ) textures2D.emplace_back().aliasTexture( uf::graph::storage.texture2Ds.map[key] ); // bind shadow maps for ( auto& texture : uf::graph::storage.shadow2Ds ) textures2D.emplace_back().aliasTexture(texture); for ( auto& texture : uf::graph::storage.shadowCubes ) texturesCube.emplace_back().aliasTexture(texture); // bind skybox size_t indexSkybox = texturesCube.size(); texturesCube.emplace_back().aliasTexture(sceneTextures.skybox); // bind noise texture size_t indexNoise = textures3D.size(); textures3D.emplace_back().aliasTexture(sceneTextures.noise); // attach VXGI voxels if ( uf::renderer::settings::experimental::vxgi ) { for ( auto& t : sceneTextures.voxels.id ) textures3D.emplace_back().aliasTexture(t); for ( auto& t : sceneTextures.voxels.normal ) textures3D.emplace_back().aliasTexture(t); for ( auto& t : sceneTextures.voxels.uv ) textures3D.emplace_back().aliasTexture(t); for ( auto& t : sceneTextures.voxels.radiance ) textures3D.emplace_back().aliasTexture(t); for ( auto& t : sceneTextures.voxels.depth ) textures3D.emplace_back().aliasTexture(t); } // bind textures while ( textures2D.size() < metadata.max.textures2D ) textures2D.emplace_back().aliasTexture(uf::renderer::Texture2D::empty); while ( texturesCube.size() < metadata.max.texturesCube ) texturesCube.emplace_back().aliasTexture(uf::renderer::TextureCube::empty); while ( textures3D.size() < metadata.max.textures3D ) textures3D.emplace_back().aliasTexture(uf::renderer::Texture3D::empty); // update uniform information // hopefully write combining kicks in UniformDescriptor uniforms; { for ( auto i = 0; i < 2; ++i ) { uniforms.matrices[i] = UniformDescriptor::Matrices{ .view = camera.getView(i), .projection = camera.getProjection(i), .iView = uf::matrix::inverse( camera.getView(i) ), .iProjection = uf::matrix::inverse( camera.getProjection(i) ), .iProjectionView = uf::matrix::inverse( camera.getProjection(i) * camera.getView(i) ), .eyePos = camera.getEye( i ), }; } uniforms.mode = UniformDescriptor::Mode{ .mode = metadata.shader.mode, .scalar = metadata.shader.scalar, .padding = pod::Vector2ui{0,0}, .parameters = metadata.shader.parameters, }; uniforms.fog = UniformDescriptor::Fog{ .color = metadata.fog.color, .stepScale = metadata.fog.stepScale, .offset = metadata.fog.density.offset * (float) metadata.fog.density.timescale * (float) uf::physics::time::current, .densityScale = metadata.fog.density.scale, .range = metadata.fog.range, .densityThreshold = metadata.fog.density.threshold, .densityMultiplier = metadata.fog.density.multiplier, .absorbtion = metadata.fog.absorbtion, }; uniforms.vxgi = UniformDescriptor::VXGI{ .matrix = metadataVxgi.extents.matrix, .cascadePower = metadataVxgi.cascadePower, .granularity = metadataVxgi.granularity, .shadows = metadataVxgi.shadows, }; uniforms.lengths = UniformDescriptor::Lengths{ .lights = MIN( uf::graph::storage.lights.size(), metadata.light.max ), .materials = MIN( uf::graph::storage.materials.keys.size(), metadata.max.textures2D ), .textures = MIN( uf::graph::storage.textures.keys.size(), metadata.max.textures2D ), .drawCommands = MIN( 0, metadata.max.textures2D ), }; uniforms.ambient = metadata.light.ambient; uniforms.gamma = metadata.light.gamma; uniforms.exposure = metadata.light.exposure; uniforms.brightnessThreshold = metadata.light.brightnessThreshold; uniforms.msaa = ext::vulkan::settings::msaa; uniforms.shadowSamples = std::min( 0, metadata.shadow.samples ); uniforms.indexSkybox = indexSkybox; } for ( auto* blitter : blitters ) { auto& graphic = *blitter; if ( !graphic.initialized ) continue; uf::stl::vector previousTextures; for ( auto& texture : graphic.material.textures ) previousTextures.emplace_back(texture.image); graphic.material.textures.clear(); // attach our textures to the graphic for ( auto& t : textures2D ) graphic.material.textures.emplace_back().aliasTexture(t); for ( auto& t : texturesCube ) graphic.material.textures.emplace_back().aliasTexture(t); for ( auto& t : textures3D ) graphic.material.textures.emplace_back().aliasTexture(t); // trigger an update when we have differing bound texture sizes bool shouldUpdate = metadata.shader.invalidated || graphic.material.textures.size() != previousTextures.size(); for ( uint32_t i = 0; !shouldUpdate && i < previousTextures.size() && i < graphic.material.textures.size(); ++i ) { if ( previousTextures[i] != graphic.material.textures[i].image ) shouldUpdate = true; } if ( shouldUpdate ) graphic.updatePipelines(); auto& shader = graphic.material.getShader(isCompute ? "compute" : "fragment"); shader.updateBuffer( uniforms, shader.getUniformBuffer("UBO") ); } #endif } #undef this