reactphysics3d/include/reactphysics3d/components/BallAndSocketJointComponents.h
Daniel Chappuis b2b72036ac Fix warnings
2021-08-24 17:31:58 +02:00

484 lines
20 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2020 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_BALL_AND_SOCKET_JOINT_COMPONENTS_H
#define REACTPHYSICS3D_BALL_AND_SOCKET_JOINT_COMPONENTS_H
// Libraries
#include <reactphysics3d/mathematics/Transform.h>
#include <reactphysics3d/mathematics/Matrix3x3.h>
#include <reactphysics3d/engine/Entity.h>
#include <reactphysics3d/components/Components.h>
#include <reactphysics3d/containers/Map.h>
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class declarations
class MemoryAllocator;
class EntityManager;
class BallAndSocketJoint;
enum class JointType;
// Class BallAndSocketJointComponents
/**
* This class represent the component of the ECS with data for the BallAndSocketJoint.
*/
class BallAndSocketJointComponents : public Components {
private:
// -------------------- Attributes -------------------- //
/// Array of joint entities
Entity* mJointEntities;
/// Array of pointers to the joints
BallAndSocketJoint** mJoints;
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3* mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3* mLocalAnchorPointBody2;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR2World;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3* mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3* mI2;
/// Bias vector for the constraint
Vector3* mBiasVector;
/// Inverse mass matrix K=JM^-1J^-t of the constraint
Matrix3x3* mInverseMassMatrix;
/// Accumulated impulse
Vector3* mImpulse;
/// True if the joint cone limit is enabled
bool* mIsConeLimitEnabled;
/// Cone limit impulse
decimal* mConeLimitImpulse;
/// Cone limit half angle
decimal* mConeLimitHalfAngle;
/// Inverse of mass matrix K=JM^-1J^t for the cone limit
decimal* mInverseMassMatrixConeLimit;
/// Bias of the cone limit constraint
decimal* mBConeLimit;
/// True if the cone limit is violated
bool* mIsConeLimitViolated;
/// Cone limit axis in local-space of body 1
Vector3* mConeLimitLocalAxisBody1;
/// Cone limit axis in local-space of body 2
Vector3* mConeLimitLocalAxisBody2;
/// Cross product of cone limit axis of both bodies
Vector3* mConeLimitACrossB;
// -------------------- Methods -------------------- //
/// Allocate memory for a given number of components
virtual void allocate(uint32 nbComponentsToAllocate) override;
/// Destroy a component at a given index
virtual void destroyComponent(uint32 index) override;
/// Move a component from a source to a destination index in the components array
virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
/// Swap two components in the array
virtual void swapComponents(uint32 index1, uint32 index2) override;
public:
/// Structure for the data of a transform component
struct BallAndSocketJointComponent {
bool isConeLimitEnabled;
decimal coneLimitHalfAngle;
/// Constructor
BallAndSocketJointComponent(bool isConeLimitEnabled, decimal coneLimitHalfAngle)
: isConeLimitEnabled(isConeLimitEnabled), coneLimitHalfAngle(coneLimitHalfAngle) {
}
};
// -------------------- Methods -------------------- //
/// Constructor
BallAndSocketJointComponents(MemoryAllocator& allocator);
/// Destructor
virtual ~BallAndSocketJointComponents() override = default;
/// Add a component
void addComponent(Entity jointEntity, bool isSleeping, const BallAndSocketJointComponent& component);
/// Return a pointer to a given joint
BallAndSocketJoint* getJoint(Entity jointEntity) const;
/// Set the joint pointer to a given joint
void setJoint(Entity jointEntity, BallAndSocketJoint* joint) const;
/// Return the local anchor point of body 1 for a given joint
const Vector3& getLocalAnchorPointBody1(Entity jointEntity) const;
/// Set the local anchor point of body 1 for a given joint
void setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1);
/// Return the local anchor point of body 2 for a given joint
const Vector3& getLocalAnchorPointBody2(Entity jointEntity) const;
/// Set the local anchor point of body 2 for a given joint
void setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2);
/// Return the vector from center of body 1 to anchor point in world-space
const Vector3& getR1World(Entity jointEntity) const;
/// Set the vector from center of body 1 to anchor point in world-space
void setR1World(Entity jointEntity, const Vector3& r1World);
/// Return the vector from center of body 2 to anchor point in world-space
const Vector3& getR2World(Entity jointEntity) const;
/// Set the vector from center of body 2 to anchor point in world-space
void setR2World(Entity jointEntity, const Vector3& r2World);
/// Return the inertia tensor of body 1 (in world-space coordinates)
const Matrix3x3& getI1(Entity jointEntity) const;
/// Set the inertia tensor of body 1 (in world-space coordinates)
void setI1(Entity jointEntity, const Matrix3x3& i1);
/// Return the inertia tensor of body 2 (in world-space coordinates)
const Matrix3x3& getI2(Entity jointEntity) const;
/// Set the inertia tensor of body 2 (in world-space coordinates)
void setI2(Entity jointEntity, const Matrix3x3& i2);
/// Return the bias vector for the constraint
Vector3& getBiasVector(Entity jointEntity);
/// Set the bias vector for the constraint
void setBiasVector(Entity jointEntity, const Vector3& biasVector);
/// Return the inverse mass matrix K=JM^-1J^-t of the constraint
Matrix3x3& getInverseMassMatrix(Entity jointEntity);
/// Set the inverse mass matrix K=JM^-1J^-t of the constraint
void setInverseMassMatrix(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the accumulated impulse
Vector3& getImpulse(Entity jointEntity);
/// Set the accumulated impulse
void setImpulse(Entity jointEntity, const Vector3& impulse);
/// Return true if the cone limit is enabled
bool getIsConeLimitEnabled(Entity jointEntity) const;
/// Set to true if the cone limit is enabled
void setIsConeLimitEnabled(Entity jointEntity, bool isLimitEnabled);
/// Return the cone limit impulse
bool getConeLimitImpulse(Entity jointEntity) const;
/// Set the cone limit impulse
void setConeLimitImpulse(Entity jointEntity, decimal impulse);
/// Return the cone limit half angle
bool getConeLimitHalfAngle(Entity jointEntity) const;
/// Set the cone limit half angle
void setConeLimitHalfAngle(Entity jointEntity, decimal halfAngle);
/// Return the inverse mass matrix cone limit
bool getInverseMassMatrixConeLimit(Entity jointEntity) const;
/// Set the inverse mass matrix cone limit
void setInverseMassMatrixConeLimit(Entity jointEntity, decimal inverseMassMatrix);
/// Get the cone limit local axis of body 1
Vector3 getConeLimitLocalAxisBody1(Entity jointEntity) const;
/// Set the cone limit local axis of body 1
void setConeLimitLocalAxisBody1(Entity jointEntity, const Vector3& localAxisBody1);
/// Get the cone limit local axis of body 2
Vector3 getConeLimitLocalAxisBody2(Entity jointEntity) const;
/// Set the cone limit local axis of body 2
void setConeLimitLocalAxisBody2(Entity jointEntity, const Vector3& localAxisBody2);
// -------------------- Friendship -------------------- //
friend class BroadPhaseSystem;
friend class SolveBallAndSocketJointSystem;
};
// Return a pointer to a given joint
RP3D_FORCE_INLINE BallAndSocketJoint* BallAndSocketJointComponents::getJoint(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mJoints[mMapEntityToComponentIndex[jointEntity]];
}
// Set the joint pointer to a given joint
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setJoint(Entity jointEntity, BallAndSocketJoint* joint) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mJoints[mMapEntityToComponentIndex[jointEntity]] = joint;
}
// Return the local anchor point of body 1 for a given joint
RP3D_FORCE_INLINE const Vector3& BallAndSocketJointComponents::getLocalAnchorPointBody1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 1 for a given joint
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody1;
}
// Return the local anchor point of body 2 for a given joint
RP3D_FORCE_INLINE const Vector3& BallAndSocketJointComponents::getLocalAnchorPointBody2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 2 for a given joint
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody2;
}
// Return the vector from center of body 1 to anchor point in world-space
RP3D_FORCE_INLINE const Vector3& BallAndSocketJointComponents::getR1World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 1 to anchor point in world-space
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setR1World(Entity jointEntity, const Vector3& r1World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1World[mMapEntityToComponentIndex[jointEntity]] = r1World;
}
// Return the vector from center of body 2 to anchor point in world-space
RP3D_FORCE_INLINE const Vector3& BallAndSocketJointComponents::getR2World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 2 to anchor point in world-space
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setR2World(Entity jointEntity, const Vector3& r2World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2World[mMapEntityToComponentIndex[jointEntity]] = r2World;
}
// Return the inertia tensor of body 1 (in world-space coordinates)
RP3D_FORCE_INLINE const Matrix3x3& BallAndSocketJointComponents::getI1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 1 (in world-space coordinates)
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI1[mMapEntityToComponentIndex[jointEntity]] = i1;
}
// Return the inertia tensor of body 2 (in world-space coordinates)
RP3D_FORCE_INLINE const Matrix3x3& BallAndSocketJointComponents::getI2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 2 (in world-space coordinates)
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI2[mMapEntityToComponentIndex[jointEntity]] = i2;
}
// Return the bias vector for the constraint
RP3D_FORCE_INLINE Vector3 &BallAndSocketJointComponents::getBiasVector(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasVector[mMapEntityToComponentIndex[jointEntity]];
}
// Set the bias vector for the constraint
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setBiasVector(Entity jointEntity, const Vector3& biasVector) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasVector[mMapEntityToComponentIndex[jointEntity]] = biasVector;
}
// Return the inverse mass matrix K=JM^-1J^-t of the constraint
RP3D_FORCE_INLINE Matrix3x3& BallAndSocketJointComponents::getInverseMassMatrix(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrix[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inverse mass matrix K=JM^-1J^-t of the constraint
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setInverseMassMatrix(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrix[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the accumulated impulse
RP3D_FORCE_INLINE Vector3& BallAndSocketJointComponents::getImpulse(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulse[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setImpulse(Entity jointEntity, const Vector3& impulse) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulse[mMapEntityToComponentIndex[jointEntity]] = impulse;
}
// Return true if the cone limit is enabled
RP3D_FORCE_INLINE bool BallAndSocketJointComponents::getIsConeLimitEnabled(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsConeLimitEnabled[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the cone limit is enabled
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setIsConeLimitEnabled(Entity jointEntity, bool isLimitEnabled) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsConeLimitEnabled[mMapEntityToComponentIndex[jointEntity]] = isLimitEnabled;
}
// Return the cone limit impulse
RP3D_FORCE_INLINE bool BallAndSocketJointComponents::getConeLimitImpulse(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mConeLimitImpulse[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cone limit impulse
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setConeLimitImpulse(Entity jointEntity, decimal impulse) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mConeLimitImpulse[mMapEntityToComponentIndex[jointEntity]] = impulse;
}
// Return the cone limit half angle
RP3D_FORCE_INLINE bool BallAndSocketJointComponents::getConeLimitHalfAngle(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mConeLimitHalfAngle[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cone limit half angle
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setConeLimitHalfAngle(Entity jointEntity, decimal halfAngle) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mConeLimitHalfAngle[mMapEntityToComponentIndex[jointEntity]] = halfAngle;
}
// Return the inverse mass matrix cone limit
RP3D_FORCE_INLINE bool BallAndSocketJointComponents::getInverseMassMatrixConeLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixConeLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inverse mass matrix cone limit
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setInverseMassMatrixConeLimit(Entity jointEntity, decimal inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixConeLimit[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Get the cone limit local axis of body 1
RP3D_FORCE_INLINE Vector3 BallAndSocketJointComponents::getConeLimitLocalAxisBody1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mConeLimitLocalAxisBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cone limit local axis of body 1
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setConeLimitLocalAxisBody1(Entity jointEntity, const Vector3& localAxisBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mConeLimitLocalAxisBody1[mMapEntityToComponentIndex[jointEntity]] = localAxisBody1;
}
// Get the cone limit local axis of body 2
RP3D_FORCE_INLINE Vector3 BallAndSocketJointComponents::getConeLimitLocalAxisBody2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mConeLimitLocalAxisBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cone limit local axis of body 2
RP3D_FORCE_INLINE void BallAndSocketJointComponents::setConeLimitLocalAxisBody2(Entity jointEntity, const Vector3& localAxisBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mConeLimitLocalAxisBody2[mMapEntityToComponentIndex[jointEntity]] = localAxisBody2;
}
}
#endif