import math import torch import torch.nn.functional as F import traceback from typing import Literal, overload from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from torchvision.models import resnet18 from ..data import get_symmap def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m class Model(nn.Module): def __init__( self, n_tokens: int = 0, # number of token types n_len: int = 6, # how long a sequence can be d_model: int = 512, ): super().__init__() _symmap = get_symmap() self.symmap = { f'{v}': k for k, v in _symmap.items() } self.symmap['0'] = "" if n_tokens == 0: n_tokens = len(_symmap.keys()) self.n_tokens = n_tokens self.n_len = n_len + 2 # start/stop tokens self.d_model = d_model self.resnet = resnet18(pretrained=False) self.resnet.fc = nn.Linear( self.d_model, self.n_tokens * self.n_len ) self.criterion = nn.CTCLoss(zero_infinity=True) def forward( self, image, text = None, sampling_temperature: float = 1.0, ): x_list = torch.stack( image, dim=0 ) x = self.resnet( x_list ) y = x.view(x.size(0), self.n_len, self.n_tokens) # pred = y.argmax(dim=2) pred = Categorical(logits=y / sampling_temperature).sample() answer = [ "".join([ self.symmap[f'{x.item()}'] for x in t ]) for t in pred ] if text is not None: y_list = rearrange(pad_sequence(text), "t b -> b t") loss = 0 for i in range(self.n_len): loss += F.cross_entropy( y[:, i], y_list[:, i] ) self.loss = dict( nll=loss ) return answer def example_usage(): from ..config import cfg cfg.trainer.backend = "local" cfg.trainer.check_for_oom = False from functools import partial from einops import repeat from ..emb.qnt import decode_to_file from ..engines import Engine, Engines from tqdm import tqdm, trange from .ar import AR from .nar import NAR device = "cpu" x8 = partial(repeat, pattern="t -> t l", l=2) symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} def tokenize(content, lang_marker="en"): split = content.split(" ") phones = [f""] + [ " " if not p else p for p in split ] + [f""] return torch.tensor([*map(symmap.get, phones)]).to() kwargs = { 'n_tokens': 1024, 'd_model': 1024, 'n_heads': 16, 'n_layers': 12, } models = { "ar": AR(**kwargs).to(device), "nar": NAR(**kwargs).to(device) } engines = Engines({ name: Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() }) train = True def sample( name, steps=400 ): AR = None NAR = None engines.eval() for name, engine in engines.items(): if name[:2] == "ar": AR = engine elif name[:3] == "nar": NAR = engine resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0) resps_list = [r.unsqueeze(-1) for r in resps_list] codes = NAR( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 ) decode_to_file(resps_list[0], f"./data/ar.{name}.wav", device=device) decode_to_file(codes[0], f"./data/ar+nar.{name}.wav", device=device) if train: sample("init", 15) engines.train() t = trange(60) for i in t: stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list}, device="cpu") t.set_description(f"{stats}") else: for name, engine in engines.items(): engine.module.load_state_dict(torch.load(f"./data/{name}.pth")) sample("final") if __name__ == "__main__": example_usage()