Refactor, add NAR

This commit is contained in:
enhuiz 2023-01-12 12:56:33 +08:00
parent 6c5f250faa
commit af4dbf0b3e
7 changed files with 654 additions and 0 deletions

Binary file not shown.

BIN
data/test/test.nar.init.wav Normal file

Binary file not shown.

Binary file not shown.

View File

126
vall_e/vall_e/ar.py Normal file
View File

@ -0,0 +1,126 @@
import torch
from einops import rearrange
from torch import Tensor
from tqdm import trange
from .base import Base
class AR(Base):
@property
def n_levels(self):
return 1
@property
def casual(self):
return True
@property
def use_stop_token(self):
return True
def _prune(self, l: Tensor):
indices = (l == self.stop_token).nonzero()
if len(indices) == 0:
return l
return l[: indices[0].item()]
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
resp_list: list[Tensor],
):
return super().forward(
text_list,
prom_list,
resp_list,
resp_list,
quant_level=0,
shift_targ_list=True,
return_all_resp=False,
)
def generate(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
max_steps: int = 1000,
):
device = text_list[0].device
resp_list: list[Tensor] = [
torch.zeros(0, device=device).long() for _ in text_list
]
stopped = [False] * len(text_list)
for _ in trange(max_steps):
r = super().forward(text_list, prom_list, resp_list)
for i, ri in enumerate(r):
if ri.item() == self.stop_token:
stopped[i] = True
resp_list[i] = torch.cat([resp_list[i], ri[None]])
if all(stopped):
break
pruned = [self._prune(r) for r in resp_list]
return pruned
def example_usage():
import soundfile
device = "cuda"
qnt = torch.load("data/test/test.qnt.pt")[0, 0].to(device)
num_qnts = 1024
model = AR(num_qnts).to(device)
text_list = [
torch.tensor([1, 2, 3], device=device),
torch.tensor([2, 3], device=device),
]
prom_list = [
torch.tensor([1, 2, 3], device=device),
torch.tensor([2, 3], device=device),
]
resp_list = [
torch.tensor([1, 2, 3], device=device),
qnt.to(device),
]
out = model.generate(
text_list,
prom_list,
max_steps=200,
)
print(out)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for i in range(100):
optimizer.zero_grad()
_ = model(text_list, prom_list, resp_list)
losses = model.loss
sum(losses.values()).backward()
optimizer.step()
if i % 20 == 0:
print(f"iter={i}, {losses}.")
out = model.generate(text_list, prom_list, max_steps=200)
print(qnt)
print(out)
from ..emb.qnt import decode
codes = rearrange(out[1], "t -> 1 1 t")
wavs, sr = decode(codes)
soundfile.write("data/test/test.ar.recon.wav", wavs.cpu()[0, 0], sr)
if __name__ == "__main__":
example_usage()

372
vall_e/vall_e/base.py Normal file
View File

@ -0,0 +1,372 @@
import math
from dataclasses import dataclass
from functools import partial
from typing import Literal, overload
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor, einsum, nn
from torch.distributions import Categorical
from torch.nn.utils.rnn import pad_sequence
def _create_mask(l, device):
"""1 is valid region and 0 is invalid."""
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
return (seq < stop).float() # (b t)
def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
"""
Args:
x_list: [(t d)]
Returns:
x: (? ? ?)
m: (? ? ?), same as x
"""
l = list(map(len, x_list))
x = rearrange(pad_sequence(x_list), pattern)
m = _create_mask(l, x_list[0].device)
m = m.t().unsqueeze(-1) # (t b 1)
m = rearrange(m, pattern)
return x, m
class SinusodialEmbedding(nn.Module):
def __init__(self, d_model):
super().__init__()
self.d_model = d_model
exponent = torch.arange(self.d_half, dtype=torch.float32)
exponent = exponent / self.d_half
omega = torch.exp(-math.log(1e4) * exponent)
self.omega: torch.Tensor
self.register_buffer("omega", omega, persistent=False)
@property
def d_half(self):
assert self.d_model % 2 == 0, "Only support even d_model."
return self.d_model // 2
def forward(self, x):
"""
Args:
x: (...)
Returns:
pe: (... d)
"""
omega = self.omega
while omega.dim() <= x.dim():
omega = omega.unsqueeze(0) # (... d)
x = x.unsqueeze(-1) # (... 1)
x = omega * x
x = torch.cat([x.sin(), x.cos()], dim=-1)
return x
def get_pe(self, n: int):
"""
Args:
n: int
Returns:
pe: (n d)
"""
device = self.omega.device
return self.forward(torch.arange(n, device=device))
def add_pe(self, x):
"""
Args:
x: (b t c)
"""
e = self.get_pe(x.shape[1]) # t d
e = e[None] # b t d
x = x + e
return x
class Attention(nn.Module):
def __init__(self, d_model, num_heads, casual):
super().__init__()
assert d_model % num_heads == 0
dim_head = d_model // num_heads
self.casual = casual
self.num_heads = num_heads
self.scale = dim_head**-0.5
self.to_qkv = nn.Linear(d_model, d_model * 3, bias=False)
self.to_out = nn.Linear(d_model, d_model)
def forward(self, x, m):
"""
Args:
x: (b t c)
m: (b t c), 1 is data, 0 is padding
Returns:
x: (b t c)
"""
h = self.num_heads
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, "b t (h d) -> b t h d", h=h), (q, k, v))
e = einsum("b i h d, b j h d -> b i j h", q, k)
e = e * self.scale
kpm = m.unsqueeze(1) * m.unsqueeze(2) # b i j 1
if self.casual:
kpm = kpm.squeeze(-1).tril().unsqueeze(-1) # b i j 1
e = e.masked_fill(kpm == 0, -torch.finfo(e.dtype).max)
a = e.softmax(dim=2) # Normalize on j, i.e. key
o = einsum("b i j h, b j h d -> b i h d", a, v)
o = o.flatten(-2)
o = self.to_out(o) # b t c
o = o * m
return o
class PrenormResidual(nn.Module):
def __init__(self, block, d_model, dropout, requires_mask=False):
super().__init__()
self.block = block
self.requires_mask = requires_mask
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, m):
opts = {"m": m} if self.requires_mask else {}
x = x + self.dropout(self.block(self.norm(x) * m, **opts))
return x * m
class Block(nn.Sequential):
def __init__(self, d_model, num_heads, dropout, casual):
super().__init__()
self.attn = PrenormResidual(
Attention(d_model, num_heads, casual),
d_model=d_model,
dropout=dropout,
requires_mask=True,
)
self.ffn = PrenormResidual(
nn.Sequential(
nn.Linear(d_model, d_model * 4),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(d_model * 4, d_model),
),
d_model=d_model,
dropout=dropout,
)
def forward(self, x, m):
"""
Args:
x: (b t c)
m: (b t 1)
"""
x = self.attn(x, m)
x = self.ffn(x, m)
return x
class Embedding(nn.Embedding):
def forward(self, x: list[Tensor]) -> list[Tensor]:
if len(x) == 0:
return []
return super().forward(torch.cat(x)).split([*map(len, x)])
def _join(x: tuple[Tensor], sep: Tensor):
"""
Args:
x: (k t d)
sep: (d)
"""
ret = x[0]
for i in range(1, len(x)):
ret = torch.cat((ret, sep[None], x[i]), dim=0)
return ret
class Base(nn.Module):
@property
def casual(self) -> bool:
raise NotImplementedError
@property
def n_levels(self) -> int:
raise NotImplementedError
@property
def use_stop_token(self) -> bool:
raise NotImplementedError
def __init__(
self,
n_tokens: int,
d_model: int = 512,
n_heads: int = 8,
n_layers: int = 12,
p_dropout: float = 0.1,
):
super().__init__()
self.n_tokens = n_tokens
n_levels = self.n_levels
casual = self.casual
n_stop_tokens = 1 if self.use_stop_token else 0
n_resp_tokens = n_tokens + n_stop_tokens
self.text_emb = Embedding(n_tokens, d_model)
self.prom_emb = Embedding(n_tokens, d_model)
# +1 to include the stop token
self.resp_embs = nn.ModuleList(
[Embedding(n_resp_tokens, d_model) for _ in range(n_levels)]
)
self.sin_emb = SinusodialEmbedding(d_model)
self.sep = nn.Parameter(torch.randn(d_model))
blocks = [Block(d_model, n_heads, p_dropout, casual) for _ in range(n_layers)]
self.blocks = nn.ModuleList(blocks)
self.classifier = nn.Linear(d_model, n_resp_tokens)
@property
def stop_token(self):
if not self.use_stop_token:
raise ValueError("Not using stop token!")
return self.n_tokens
@property
def ignore_index(self):
return -100
@staticmethod
def _samplewise_merge_tensors(*l, sep: Tensor | None):
if sep is None:
cat = torch.cat
else:
cat = partial(_join, sep=sep)
return [*map(cat, zip(*l))]
@overload
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
resp_list: list[Tensor],
targ_list: list[Tensor] | None = None,
quant_level: int = 0,
shift_targ_list: bool = False,
return_all_resp: Literal[False] = False,
) -> Tensor:
...
@overload
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
resp_list: list[Tensor],
targ_list: list[Tensor] | None = None,
quant_level: int = 0,
shift_targ_list: bool = False,
return_all_resp: Literal[True] = True,
) -> list[Tensor]:
...
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
resp_list: list[Tensor],
targ_list: list[Tensor] | None = None,
quant_level: int = 0,
shift_targ_list: bool = False,
return_all_resp: bool = False,
):
"""
Args:
text_list: [t] * b
prom_list: [t'] * b
resp_list: [t''] * b, one quantization level only
targ_list: [t''] * b, one quantization level only, when given, loss will be computed
quant_level: specify which quant_level to feed forward, used in NAR mode.
shift_targ_list: whether to shift target list when computing loss. True if AR.
return_all_resp: True if NAR.
Returns:
y: sampled tokens
"""
x_list = self._samplewise_merge_tensors(
self.text_emb(text_list),
self.prom_emb(prom_list),
self.resp_embs[quant_level](resp_list),
sep=self.sep,
)
x, m = list_to_tensor(x_list)
x = self.sin_emb.add_pe(x)
for block in self.blocks:
x = block(x, m)
h = self.classifier(x) * m
# Remove padding
h_list = [hi[:li] for hi, li in zip(h, map(len, x_list))]
if targ_list is not None:
if any([l == 0 for l in map(len, targ_list)]):
raise ValueError("Cannot compute loss given empty targ_list.")
device = h.device
ignore_sep = torch.tensor(self.ignore_index, device=device)
text_prom_list = self._samplewise_merge_tensors(
text_list, prom_list, sep=ignore_sep
)
# Make every token earlier as it is future that is unknown
for i in range(len(text_prom_list)):
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
text_prom_list[i][-1] = self.ignore_index
if shift_targ_list:
# Also make target earlier if in autoregressive mode
targ_list = [*targ_list]
for i in range(len(targ_list)):
targ_list[i] = targ_list[i].roll(-1, dims=0)
targ_list[i][-1] = self.stop_token
y_list = self._samplewise_merge_tensors(
text_prom_list, targ_list, sep=ignore_sep
)
self.loss = dict(
nll=F.cross_entropy(
torch.cat(h_list),
torch.cat(y_list),
ignore_index=self.ignore_index,
)
)
if return_all_resp:
logits = [hi[-li:] for hi, li in zip(h_list, map(len, resp_list))]
ret = [Categorical(logits=hi).sample() for hi in logits]
else:
logits = torch.stack([hi[-1] for hi in h_list])
ret = Categorical(logits=logits).sample()
return ret

156
vall_e/vall_e/nar.py Normal file
View File

@ -0,0 +1,156 @@
import torch
from einops import rearrange
from torch import Tensor
from .base import Base
class NAR(Base):
@property
def n_levels(self):
return 7
@property
def casual(self):
return False
@property
def use_stop_token(self):
return False
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
*,
resp_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
):
"""
Args:
text_list: [t] * b
prom_list: [t'] * b
resp_list: [t'] * b, quants at level 0.
resps_list: [t''] * b, 8 quantization levels for training.
Returns:
y: logits of last output, b k
"""
if (resp_list is None) == (resps_list is None):
raise ValueError(
"Given one and only one, either resp_list (generation) or resps_list (training)."
)
if resps_list is not None:
levels = {r.shape[-1] for r in resps_list}
if any(level != self.n_levels + 1 for level in levels):
raise ValueError(
f"resps_list should have exactly {self.n_levels + 1} levels, but got {levels}."
)
if resp_list is not None:
hyp_resp_lists = [resp_list]
for i in range(self.n_levels):
hyp_resp_list = super().forward(
text_list,
prom_list,
hyp_resp_lists[-1],
return_all_resp=True,
shift_targ_list=False,
quant_level=i,
)
hyp_resp_lists.append(hyp_resp_list)
else:
assert resps_list is not None
loss = {}
resp_list = [o[..., 0] for o in resps_list]
hyp_resp_lists = [resp_list]
for i in range(self.n_levels):
resp_list = [o[..., 0] for o in resps_list]
next_resp_list = [o[..., i + 1] for o in resps_list]
hyp_resp_list = super().forward(
text_list,
prom_list,
resp_list,
next_resp_list,
return_all_resp=True,
shift_targ_list=False,
quant_level=i,
)
hyp_resp_lists.append(hyp_resp_list)
loss |= {f"l{i}": self.loss}
del self.loss
self.loss = loss
hyp_resps_list = [
*map(lambda ts: torch.stack(ts, dim=-1), zip(*hyp_resp_lists))
]
return hyp_resps_list
def example_usage():
import soundfile
from ..emb.qnt import decode
from ..utils import gather_attribute
device = "cuda"
resps = torch.load("data/test/test.qnt.pt")[0].to(device)
num_qnts = 1024
model = NAR(num_qnts).to(device)
text_list = [
torch.tensor([1, 2, 3], device=device),
torch.tensor([2, 3], device=device),
]
prom_list = [
torch.tensor([1, 2, 3], device=device),
torch.tensor([2, 3], device=device),
]
resp_list = [
torch.tensor([1, 2, 3], device=device),
resps[0].to(device),
]
resps_list = [
torch.tensor([1, 2, 3], device=device)
.unsqueeze(-1)
.repeat_interleave(8, dim=-1),
resps.t().to(device),
]
out = model(text_list, prom_list, resp_list=resp_list)
codes = rearrange(out[1], "t k -> 1 k t")
print(codes)
wavs, sr = decode(codes)
soundfile.write("data/test/test.nar.init.wav", wavs.cpu()[0, 0], sr)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for i in range(100):
optimizer.zero_grad()
_ = model(text_list, prom_list, resps_list=resps_list)
losses = gather_attribute(model, "loss")
loss = sum(losses.values())
loss.backward()
optimizer.step()
if i % 20 == 0:
stats = {k: v.item() for k, v in losses.items()}
stats["loss"] = loss.item()
print(f"iter={i}, {stats}.")
out = model(text_list, prom_list, resp_list=resp_list)
codes = rearrange(out[1], "t k -> 1 k t")
wavs, sr = decode(codes)
soundfile.write("data/test/test.nar.recon.wav", wavs.cpu()[0, 0], sr)
if __name__ == "__main__":
example_usage()