diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000..c539e8c --- /dev/null +++ b/Dockerfile @@ -0,0 +1,18 @@ +FROM python:3.10.7 + +RUN pip install --upgrade pip + +ADD . /app + +WORKDIR /app/ + +RUN pip install . + +RUN pip install jupyter + +RUN apt update && apt-get -y install libsndfile-dev + +EXPOSE 8840 + +ENTRYPOINT ["jupyter", "notebook", "--ip=0.0.0.0" , "--port=8840", "--no-browser", "--allow-root"] + diff --git a/README.md b/README.md index 2d5a1e9..44e32ed 100644 --- a/README.md +++ b/README.md @@ -19,12 +19,24 @@ An unofficial PyTorch implementation of [VALL-E](https://valle-demo.github.io/), Since the trainer is based on [DeepSpeed](https://github.com/microsoft/DeepSpeed#requirements), you will need to have a GPU that DeepSpeed has developed and tested against, as well as a CUDA or ROCm compiler pre-installed to install this package. ### Install +You can install vall-e using 3 methods: +1. Docker +``` +git clone --recurse-submodules https://github.com/enhuiz/vall-e.git +cd vall-e +docker build -t valle/python3.10 . +docker run -it --gpus=all --net=host --ipc=host -v $(pwd):/app/ valle/python3.10 + +``` +The last command will run the docker image using all the available GPUs, you can refer to the [documentation](https://docs.docker.com/config/containers/resource_constraints/#:~:text=an%20error%20occurs.-,GPU,-%F0%9F%94%97) to specify the GPUs you want to use. Also, it will use a volume that keeps all of the container's files shared between the container's `/app` and the current working directory of the server `$(pwd)`. + +1. Pip ``` pip install git+https://github.com/enhuiz/vall-e ``` -Or you may clone by: +1. Clone ``` git clone --recurse-submodules https://github.com/enhuiz/vall-e.git