DL-Art-School/codes/scripts/srflow_latent_space_playground.py

217 lines
8.1 KiB
Python
Raw Normal View History

import argparse
import logging
import math
import os
import random
from glob import glob
import torch
import torch.nn.functional as F
import torchvision
from PIL import Image
from tqdm import tqdm
import utils.options as option
import utils
from data import create_dataset, create_dataloader
from data.image_corruptor import ImageCorruptor
from models.ExtensibleTrainer import ExtensibleTrainer
from utils import util
def image_2_tensor(impath, desired_size):
img = Image.open(impath)
if desired_size is not None:
factor = max(desired_size[0] / img.width, desired_size[1] / img.height)
new_size = (int(math.ceil(img.width * factor)), int(math.ceil(img.height * factor)))
img = img.resize(new_size, Image.BICUBIC)
h_gap = img.height - desired_size[1]
w_gap = img.width - desired_size[0]
assert h_gap >= 0 and w_gap >= 0
ht = h_gap // 2
hb = desired_size[1] + ht
wl = w_gap // 2
wr = desired_size[1] + wl
timg = torchvision.transforms.ToTensor()(img).unsqueeze(0)
if desired_size is not None:
timg = timg[:, :3, ht:hb, wl:wr]
assert timg.shape[2] == desired_size[1] and timg.shape[3] == desired_size[0]
else:
# Enforce that the input must have a input dimension that is a factor of 16.
b, c, h, w = timg.shape
h = (h // 16) * 16
w = (w // 16) * 16
timg = timg[:, :3, :h, :w]
return timg
def interpolate_lr(hr, scale):
return F.interpolate(hr, scale_factor=1 / scale, mode="area")
def fetch_latents_for_image(gen, img, scale, lr_infer=interpolate_lr):
z, _, _ = gen(gt=img,
lr=lr_infer(img, scale),
epses=[],
reverse=False,
add_gt_noise=False)
return z
def fetch_latents_for_images(gen, imgs, scale, lr_infer=interpolate_lr):
latents = []
for img in tqdm(imgs):
z, _, _ = gen(gt=img,
lr=lr_infer(img, scale),
epses=[],
reverse=False,
add_gt_noise=False)
latents.append(z)
return latents
def fetch_spatial_metrics_for_latents(latents):
dt_scales = []
dt_biases = []
for i in range(len(latents)):
latent = torch.stack(latents[i], dim=-1).squeeze(0)
s = latent.std(dim=[1, 2, 3]).view(1,-1,1,1)
b = latent.mean(dim=[1, 2, 3]).view(1,-1,1,1)
dt_scales.append(s)
dt_biases.append(b)
return dt_scales, dt_biases
def spatial_norm(latents):
nlatents = []
for i in range(len(latents)):
latent = latents[i]
b, c, h, w = latent.shape
s = latent.std(dim=[2, 3]).view(1,c,1,1)
b = latent.mean(dim=[2, 3]).view(1,c,1,1)
nlatents.append((latents[i] - b) / s)
return nlatents
def local_norm(latents):
nlatents = []
for i in range(len(latents)):
latent = latents[i]
b, c, h, w = latent.shape
s = latent.std(dim=[1]).view(1,1,h,w)
b = latent.mean(dim=[1]).view(1,1,h,w)
nlatents.append((latents[i] - b) / s)
return nlatents
if __name__ == "__main__":
#### options
torch.backends.cudnn.benchmark = True
srg_analyze = False
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../experiments/train_exd_imgset_srflow/train_exd_imgset_srflow.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
utils.util.loaded_options = opt
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
model = ExtensibleTrainer(opt)
gen = model.networks['generator']
gen.eval()
mode = "latent_transfer"
imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\val2\\lr\\*"
desired_size = None # (640,640) # <- Required when doing style transfer.
scale = 2
resample_factor = 2 # When != 1, the HR image is upsampled by this factor using a bicubic to get the local latents.
temperature = .65
output_path = "E:\\4k6k\\mmsr\\results\\latent_playground"
# Data types <- used to perform latent transfer.
data_path = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half"
data_type_filters = ["*alexa*", "*lanette*", "*80755*", "*x-art-1912*", "*joli_high*", "*stacy-cruz*"]
#data_type_filters = ["*lanette*"]
max_ref_datatypes = 30 # Only picks this many images from the above data types to sample from.
interpolation_steps = 30
with torch.no_grad():
# Fetch the images to resample.
resample_imgs = []
img_files = glob(imgs_to_resample_pattern)
for i, img_file in enumerate(img_files):
#if i > 5:
# break
t = image_2_tensor(img_file, desired_size).to(model.env['device'])
if resample_factor != 1:
t = F.interpolate(t, scale_factor=resample_factor, mode="bicubic")
resample_imgs.append(t)
# Fetch the latent metrics & latents for each image we are resampling.
latents = fetch_latents_for_images(gen, resample_imgs, scale)
multiple_latents = False
if mode == "restore":
for i, latent_set in enumerate(latents):
latents[i] = local_norm(spatial_norm(latent_set))
latents[i] = [l * temperature for l in latents[i]]
elif mode == "feed_through":
latents = [torch.randn_like(l) * temperature for l in latents[i]]
elif mode == "latent_transfer":
# Just get the **one** result for each pattern and use that latent.
dt_imgs = [glob(os.path.join(data_path, p))[-5] for p in data_type_filters]
dt_transfers = [image_2_tensor(i, desired_size) for i in dt_imgs]
# Downsample the images because they are often just too big to feed through the network (probably needs to be parameterized)
for j in range(len(dt_transfers)):
if max(dt_transfers[j].shape[2], dt_transfers[j].shape[3]) > 2000:
dt_transfers[j] = F.interpolate(dt_transfers[j], scale_factor=1/2, mode='area')
corruptor = ImageCorruptor({'fixed_corruptions':['jpeg-low', 'gaussian_blur_5']})
def corrupt_and_downsample(img, scale):
img = F.interpolate(img, scale_factor=1/scale, mode="area")
from data.util import torch2cv, cv2torch
cvimg = torch2cv(img)
cvimg = corruptor.corrupt_images([cvimg])[0]
img = cv2torch(cvimg)
torchvision.utils.save_image(img, "corrupted_lq_%i.png" % (random.randint(0,100),))
return img
dt_latents = [fetch_latents_for_image(gen, i, scale, corrupt_and_downsample) for i in dt_transfers]
tlatents = []
for lat in latents:
dts = []
for slat in dt_latents:
assert slat[0].shape[2] >= lat[0].shape[2]
assert slat[0].shape[3] >= lat[0].shape[3]
dts.append([sl[:,:,:l.shape[2],:l.shape[3]] * temperature for l, sl in zip(lat, slat)])
tlatents.append(dts)
latents = tlatents
multiple_latents = True
# Re-compute each image with the new metrics
for i, img in enumerate(resample_imgs):
if not multiple_latents:
lats = [latents[i]]
else:
lats = latents[i]
for j in range(len(lats)):
hr, _ = gen(lr=F.interpolate(img, scale_factor=1/scale, mode="area"),
z=lats[j][0],
reverse=True,
epses=lats[j],
add_gt_noise=False)
os.makedirs(os.path.join(output_path), exist_ok=True)
torchvision.utils.save_image(hr, os.path.join(output_path, "%i_%i.png" % (i,j)))