DL-Art-School/codes/scripts/byol_spinenet_playground.py

206 lines
7.9 KiB
Python
Raw Normal View History

2020-12-06 03:30:36 +00:00
import os
import shutil
import torch
import torch.nn as nn
import torchvision
2020-12-07 19:49:32 +00:00
from PIL import Image
2020-12-06 03:30:36 +00:00
from torch.utils.data import DataLoader
2020-12-07 19:49:32 +00:00
from torchvision.transforms import ToTensor, Resize
2020-12-06 03:30:36 +00:00
from tqdm import tqdm
2020-12-07 19:49:32 +00:00
import numpy as np
2020-12-06 03:30:36 +00:00
from data.image_folder_dataset import ImageFolderDataset
from models.archs.spinenet_arch import SpineNet
# Computes the structural euclidean distance between [x,y]. "Structural" here means the [h,w] dimensions are preserved
# and the distance is computed across the channel dimension.
def structural_euc_dist(x, y):
diff = torch.square(x - y)
2020-12-07 19:49:32 +00:00
sum = torch.sum(diff, dim=-1)
2020-12-06 03:30:36 +00:00
return torch.sqrt(sum)
def cosine_similarity(x, y):
2020-12-07 19:49:32 +00:00
x = norm(x)
y = norm(y)
return -nn.CosineSimilarity()(x, y) # probably better to just use this class to perform the calc. Just left this here to remind myself.
def norm(x):
sh = x.shape
sh_r = tuple([sh[i] if i != len(sh)-1 else 1 for i in range(len(sh))])
return (x - torch.mean(x, dim=-1).reshape(sh_r)) / torch.std(x, dim=-1).reshape(sh_r)
2020-12-06 03:30:36 +00:00
def im_norm(x):
return (((x - torch.mean(x, dim=(2,3)).reshape(-1,1,1,1)) / torch.std(x, dim=(2,3)).reshape(-1,1,1,1)) * .5) + .5
def get_image_folder_dataloader(batch_size, num_workers):
dataset_opt = {
'name': 'amalgam',
2020-12-07 19:49:32 +00:00
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'],
'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\1024_test'],
2020-12-06 03:30:36 +00:00
'weights': [1],
'target_size': 512,
'force_multiple': 32,
'scale': 1
}
dataset = ImageFolderDataset(dataset_opt)
2020-12-07 19:49:32 +00:00
return DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True)
2020-12-06 03:30:36 +00:00
def create_latent_database(model):
batch_size = 8
num_workers = 1
output_path = '../../results/byol_spinenet_latents/'
os.makedirs(output_path, exist_ok=True)
dataloader = get_image_folder_dataloader(batch_size, num_workers)
id = 0
2020-12-07 19:49:32 +00:00
dict_count = 1
2020-12-06 03:30:36 +00:00
latent_dict = {}
2020-12-07 19:49:32 +00:00
all_paths = []
2020-12-06 03:30:36 +00:00
for batch in tqdm(dataloader):
2020-12-08 07:33:07 +00:00
hq = batch['hq'].to('cuda')
2020-12-06 03:30:36 +00:00
latent = model(hq)[1] # BYOL trainer only trains the '4' output, which is indexed at [1]. Confusing.
for b in range(latent.shape[0]):
2020-12-07 19:49:32 +00:00
im_path = batch['HQ_path'][b]
all_paths.append(im_path)
2020-12-06 03:30:36 +00:00
latent_dict[id] = latent[b].detach().cpu()
2020-12-07 19:49:32 +00:00
if (id+1) % 1000 == 0:
2020-12-06 03:30:36 +00:00
print("Saving checkpoint..")
2020-12-07 19:49:32 +00:00
torch.save(latent_dict, os.path.join(output_path, "latent_dict_%i.pth" % (dict_count,)))
latent_dict = {}
torch.save(all_paths, os.path.join(output_path, "all_paths.pth"))
dict_count += 1
2020-12-06 03:30:36 +00:00
id += 1
2020-12-07 19:49:32 +00:00
def _get_mins_from_latent_dictionary(latent, hq_img_repo, ld_file_name, batch_size):
_, c, h, w = latent.shape
lat_dict = torch.load(os.path.join(hq_img_repo, ld_file_name))
comparables = torch.stack(list(lat_dict.values()), dim=0).permute(0,2,3,1)
cbl_shape = comparables.shape[:3]
assert cbl_shape[1] == 32
comparables = comparables.reshape(-1, c)
clat = latent.reshape(1,-1,h*w).permute(2,0,1)
cpbl_chunked = torch.chunk(comparables, len(comparables) // batch_size)
assert len(comparables) % batch_size == 0 # The reconstruction logic doesn't work if this is not the case.
mins = []
min_offsets = []
for cpbl_chunk in tqdm(cpbl_chunked):
2020-12-08 07:33:07 +00:00
cpbl_chunk = cpbl_chunk.to('cuda')
2020-12-07 19:49:32 +00:00
dist = structural_euc_dist(clat, cpbl_chunk.unsqueeze(0))
_min = torch.min(dist, dim=-1)
mins.append(_min[0])
min_offsets.append(_min[1])
mins = torch.min(torch.stack(mins, dim=-1), dim=-1)
# There's some way to do this in torch, I just can't figure it out..
for i in range(len(mins[1])):
mins[1][i] = mins[1][i] * batch_size + min_offsets[mins[1][i]][i]
return mins[0].cpu(), mins[1].cpu(), len(comparables)
def find_similar_latents(model):
img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\adrianna_xx.jpg'
#img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\nicky_xx.jpg'
hq_img_repo = '../../results/byol_spinenet_latents'
output_path = '../../results/byol_spinenet_similars'
batch_size = 1024
num_maps = 8
os.makedirs(output_path, exist_ok=True)
img_bank_paths = torch.load(os.path.join(hq_img_repo, "all_paths.pth"))
2020-12-08 07:33:07 +00:00
img_t = ToTensor()(Image.open(img)).to('cuda').unsqueeze(0)
2020-12-07 19:49:32 +00:00
_, _, h, w = img_t.shape
img_t = img_t[:, :, :128*(h//128), :128*(w//128)]
latent = model(img_t)[1]
_, c, h, w = latent.shape
mins, min_offsets = [], []
total_latents = -1
for d_id in range(1,num_maps+1):
mn, of, tl = _get_mins_from_latent_dictionary(latent, hq_img_repo, "latent_dict_%i.pth" % (d_id), batch_size)
if total_latents != -1:
assert total_latents == tl
else:
total_latents = tl
mins.append(mn)
min_offsets.append(of)
mins = torch.min(torch.stack(mins, dim=-1), dim=-1)
# There's some way to do this in torch, I just can't figure it out..
for i in range(len(mins[1])):
mins[1][i] = mins[1][i] * total_latents + min_offsets[mins[1][i]][i]
min_ids = mins[1]
print("Constructing image map..")
doc_out = '''
<html><body><img id="imgmap" src="source.png" usemap="#map">
<map name="map">%s</map><br>
<button onclick="if(imgmap.src.includes('output.png')){imgmap.src='source.png';}else{imgmap.src='output.png';}">Swap Images</button>
</body></html>
'''
img_map_areas = []
img_out = torch.zeros((1,3,h*16,w*16))
for i, ind in enumerate(tqdm(min_ids)):
u = np.unravel_index(ind.item(), (num_maps*total_latents//(32*32),32,32))
h_, w_ = np.unravel_index(i, (h, w))
img = ToTensor()(Resize((512, 512))(Image.open(img_bank_paths[u[0]])))
t = 16 * u[1]
l = 16 * u[2]
patch = img[:, t:t+16, l:l+16]
img_out[:,:,h_*16:h_*16+16,w_*16:w_*16+16] = patch
# Also save the image with a masked map
mask = torch.full_like(img, fill_value=.3)
mask[:, t:t+16, l:l+16] = 1
masked_img = img * mask
masked_src_img_output_file = os.path.join(output_path, "%i_%i__%i.png" % (t, l, u[0]))
torchvision.utils.save_image(masked_img, masked_src_img_output_file)
# Update the image map areas.
img_map_areas.append('<area shape="rect" coords="%i,%i,%i,%i" href="%s">' % (w_*16,h_*16,w_*16+16,h_*16+16,masked_src_img_output_file))
torchvision.utils.save_image(img_out, os.path.join(output_path, "output.png"))
torchvision.utils.save_image(img_t, os.path.join(output_path, "source.png"))
doc_out = doc_out % ('\n'.join(img_map_areas))
with open(os.path.join(output_path, 'map.html'), 'w') as f:
print(doc_out, file=f)
2020-12-06 03:30:36 +00:00
def explore_latent_results(model):
2020-12-07 19:49:32 +00:00
batch_size = 16
2020-12-06 03:30:36 +00:00
num_workers = 1
output_path = '../../results/byol_spinenet_explore_latents/'
os.makedirs(output_path, exist_ok=True)
dataloader = get_image_folder_dataloader(batch_size, num_workers)
id = 0
for batch in tqdm(dataloader):
2020-12-08 07:33:07 +00:00
hq = batch['hq'].to('cuda')
2020-12-06 03:30:36 +00:00
latent = model(hq)[1] # BYOL trainer only trains the '4' output, which is indexed at [1]. Confusing.
# This operation works by computing the distance of every structural index from the center and using that
# as a "heatmap".
b, c, h, w = latent.shape
center = latent[:, :, h//2, w//2].unsqueeze(-1).unsqueeze(-1)
centers = center.repeat(1, 1, h, w)
2020-12-07 19:49:32 +00:00
dist = cosine_similarity(latent, centers).unsqueeze(1)
2020-12-06 03:30:36 +00:00
dist = im_norm(dist)
torchvision.utils.save_image(dist, os.path.join(output_path, "%i.png" % id))
id += 1
if __name__ == '__main__':
pretrained_path = '../../experiments/spinenet49_imgset_byol.pth'
2020-12-08 07:33:07 +00:00
model = SpineNet('49', in_channels=3, use_input_norm=True).to('cuda')
2020-12-06 03:30:36 +00:00
model.load_state_dict(torch.load(pretrained_path), strict=True)
model.eval()
with torch.no_grad():
2020-12-07 19:49:32 +00:00
find_similar_latents(model)