forked from mrq/DL-Art-School
176 lines
7.4 KiB
Python
176 lines
7.4 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch import nn
|
||
|
from transformers import GPT2Config, GPT2Model
|
||
|
|
||
|
from models.arch_util import AttentionBlock, ResBlock
|
||
|
from models.audio.tts.lucidrains_dvae import DiscreteVAE
|
||
|
from trainer.networks import register_model
|
||
|
from utils.util import opt_get, ceil_multiple, print_network
|
||
|
|
||
|
|
||
|
class UpperEncoder(nn.Module):
|
||
|
def __init__(self,
|
||
|
spec_dim,
|
||
|
hidden_dim,
|
||
|
embedding_dim,
|
||
|
):
|
||
|
super().__init__()
|
||
|
attn = []
|
||
|
def edim(m):
|
||
|
dd = max(hidden_dim // m, 128, spec_dim)
|
||
|
return ceil_multiple(dd, 8)
|
||
|
self.downsampler = nn.Sequential(
|
||
|
ResBlock(spec_dim, out_channels=edim(6), use_conv=True, dims=1, down=True),
|
||
|
ResBlock(edim(6), out_channels=edim(5), use_conv=True, dims=1, down=True),
|
||
|
ResBlock(edim(5), out_channels=edim(4), use_conv=True, dims=1, down=True),
|
||
|
ResBlock(edim(4), out_channels=edim(3), use_conv=True, dims=1, down=True),
|
||
|
ResBlock(edim(3), out_channels=edim(3), use_conv=True, dims=1),
|
||
|
ResBlock(edim(3), out_channels=edim(2), use_conv=True, dims=1, down=True),
|
||
|
ResBlock(edim(2), out_channels=edim(2), use_conv=True, dims=1),
|
||
|
ResBlock(edim(2), out_channels=hidden_dim, use_conv=True, dims=1, down=True))
|
||
|
self.encoder = nn.Sequential(
|
||
|
AttentionBlock(hidden_dim, 4, do_activation=True),
|
||
|
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1),
|
||
|
AttentionBlock(hidden_dim, 4, do_activation=True),
|
||
|
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1),
|
||
|
AttentionBlock(hidden_dim, 4, do_activation=True),
|
||
|
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1),
|
||
|
nn.GroupNorm(8, hidden_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Conv1d(hidden_dim, embedding_dim, 1)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
h = self.downsampler(x)
|
||
|
h = self.encoder(h)
|
||
|
return h
|
||
|
|
||
|
|
||
|
class GptMusicLower(nn.Module):
|
||
|
def __init__(self, dim, layers, encoder_out_dim, dropout=0, num_target_vectors=8192, fp16=True, num_vaes=4, vqargs={}):
|
||
|
super().__init__()
|
||
|
self.num_vaes = num_vaes
|
||
|
self.start_token = nn.Parameter(torch.randn(1, 1, dim))
|
||
|
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
|
||
|
n_inner=dim*2, attn_pdrop=dropout, resid_pdrop=dropout, gradient_checkpointing=True,
|
||
|
use_cache=False)
|
||
|
|
||
|
self.target_quantizers = nn.ModuleList([DiscreteVAE(**vqargs).eval() for _ in range(num_vaes)])
|
||
|
self.upper_encoder = UpperEncoder(256, dim, encoder_out_dim)
|
||
|
self.encoder_projector = nn.Conv1d(encoder_out_dim, dim, 1)
|
||
|
self.fp16 = fp16
|
||
|
|
||
|
# Freeze the target quantizer.
|
||
|
for p in self.target_quantizers.parameters():
|
||
|
p.DO_NOT_TRAIN = True
|
||
|
p.requires_grad = False
|
||
|
# And delete the decoder, which is unused.
|
||
|
for tq in self.target_quantizers:
|
||
|
del tq.decoder
|
||
|
|
||
|
self.gpt = GPT2Model(self.config)
|
||
|
del self.gpt.wte # Unused, we'll do our own embeddings.
|
||
|
|
||
|
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_vaes) for _ in range(num_vaes)])
|
||
|
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_vaes)])
|
||
|
|
||
|
def forward(self, mel, return_latent=False):
|
||
|
unused_params = []
|
||
|
|
||
|
with torch.no_grad():
|
||
|
codes = []
|
||
|
partition_size = mel.shape[1] // len(self.target_quantizers)
|
||
|
for i, q in enumerate(self.target_quantizers):
|
||
|
mel_partition = mel[:, i*partition_size:(i+1)*partition_size]
|
||
|
codes.append(q.get_codebook_indices(mel_partition))
|
||
|
codes = torch.stack(codes, dim=-1)
|
||
|
|
||
|
upper_vector = self.upper_encoder(mel)
|
||
|
upper_vector = self.encoder_projector(upper_vector)
|
||
|
# WTB slerp
|
||
|
upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear')
|
||
|
upper_vector = upper_vector.permute(0,2,1)
|
||
|
|
||
|
inputs = codes[:, :-1]
|
||
|
targets = codes
|
||
|
upper_vector = upper_vector[:, :-1]
|
||
|
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
|
||
|
h = torch.cat(h, dim=-1) + upper_vector
|
||
|
|
||
|
with torch.autocast(mel.device.type, enabled=self.fp16):
|
||
|
# Stick the conditioning embedding on the front of the input sequence.
|
||
|
# The transformer will learn how to integrate it.
|
||
|
# This statement also serves to pre-pad the inputs by one token, which is the basis of the next-token-prediction task. IOW: this is the "START" token.
|
||
|
h = torch.cat([self.start_token.repeat(h.shape[0], 1, 1), h], dim=1)
|
||
|
|
||
|
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
|
||
|
|
||
|
if return_latent:
|
||
|
return h.float()
|
||
|
|
||
|
losses = 0
|
||
|
for i, head in enumerate(self.heads):
|
||
|
logits = head(h).permute(0,2,1)
|
||
|
loss = F.cross_entropy(logits, targets[:,:,i])
|
||
|
losses = losses + loss
|
||
|
|
||
|
unused_adder = 0
|
||
|
for p in unused_params:
|
||
|
unused_adder = unused_adder + p.mean() * 0
|
||
|
losses = losses + unused_adder
|
||
|
|
||
|
return losses / self.num_vaes
|
||
|
|
||
|
def get_grad_norm_parameter_groups(self):
|
||
|
groups = {
|
||
|
'gpt': list(self.gpt.parameters()),
|
||
|
'heads': list(self.heads.parameters()),
|
||
|
'embeddings': list(self.embeddings.parameters()),
|
||
|
'upper_latent_encoder': list(self.upper_encoder.encoder.parameters()),
|
||
|
'upper_latent_downsampler': list(self.upper_encoder.downsampler.parameters()),
|
||
|
}
|
||
|
return groups
|
||
|
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def register_music_gpt_lower2(opt_net, opt):
|
||
|
return GptMusicLower(**opt_get(opt_net, ['kwargs'], {}))
|
||
|
|
||
|
|
||
|
def test_lower():
|
||
|
model = GptMusicLower(dim=1024, encoder_out_dim=256, layers=16, fp16=False, num_target_vectors=8192, num_vaes=4,
|
||
|
vqargs= {'positional_dims': 1, 'channels': 64,
|
||
|
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
|
||
|
'num_layers': 0, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
|
||
|
})
|
||
|
quants = ['X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_low\\models\\7500_generator.pth',
|
||
|
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_low\\models\\11000_generator.pth',
|
||
|
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_high\\models\\11500_generator.pth',
|
||
|
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_high\\models\\11500_generator.pth']
|
||
|
for i, qfile in enumerate(quants):
|
||
|
quant_weights = torch.load(qfile)
|
||
|
model.target_quantizers[i].load_state_dict(quant_weights, strict=False)
|
||
|
torch.save(model.state_dict(), 'sample.pth')
|
||
|
print_network(model)
|
||
|
|
||
|
mel = torch.randn(2,256,400)
|
||
|
model(mel)
|
||
|
pg = model.get_grad_norm_parameter_groups()
|
||
|
|
||
|
t = 0
|
||
|
for k, vs in pg.items():
|
||
|
s = 0
|
||
|
for v in vs:
|
||
|
m = 1
|
||
|
for d in v.shape:
|
||
|
m *= d
|
||
|
s += m
|
||
|
t += s
|
||
|
print(k, s/1000000)
|
||
|
print(t/1000000)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_lower()
|