forked from mrq/DL-Art-School
66 lines
2.2 KiB
Python
66 lines
2.2 KiB
Python
|
"""
|
||
|
Modified from torch.utils.data.distributed.DistributedSampler
|
||
|
Support enlarging the dataset for *iteration-oriented* training, for saving time when restart the
|
||
|
dataloader after each epoch
|
||
|
"""
|
||
|
import math
|
||
|
import torch
|
||
|
from torch.utils.data.sampler import Sampler
|
||
|
import torch.distributed as dist
|
||
|
|
||
|
|
||
|
class DistIterSampler(Sampler):
|
||
|
"""Sampler that restricts data loading to a subset of the dataset.
|
||
|
|
||
|
It is especially useful in conjunction with
|
||
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
|
||
|
process can pass a DistributedSampler instance as a DataLoader sampler,
|
||
|
and load a subset of the original dataset that is exclusive to it.
|
||
|
|
||
|
.. note::
|
||
|
Dataset is assumed to be of constant size.
|
||
|
|
||
|
Arguments:
|
||
|
dataset: Dataset used for sampling.
|
||
|
num_replicas (optional): Number of processes participating in
|
||
|
distributed training.
|
||
|
rank (optional): Rank of the current process within num_replicas.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataset, num_replicas=None, rank=None, ratio=100):
|
||
|
if num_replicas is None:
|
||
|
if not dist.is_available():
|
||
|
raise RuntimeError("Requires distributed package to be available")
|
||
|
num_replicas = dist.get_world_size()
|
||
|
if rank is None:
|
||
|
if not dist.is_available():
|
||
|
raise RuntimeError("Requires distributed package to be available")
|
||
|
rank = dist.get_rank()
|
||
|
self.dataset = dataset
|
||
|
self.num_replicas = num_replicas
|
||
|
self.rank = rank
|
||
|
self.epoch = 0
|
||
|
self.num_samples = int(math.ceil(len(self.dataset) * ratio / self.num_replicas))
|
||
|
self.total_size = self.num_samples * self.num_replicas
|
||
|
|
||
|
def __iter__(self):
|
||
|
# deterministically shuffle based on epoch
|
||
|
g = torch.Generator()
|
||
|
g.manual_seed(self.epoch)
|
||
|
indices = torch.randperm(self.total_size, generator=g).tolist()
|
||
|
|
||
|
dsize = len(self.dataset)
|
||
|
indices = [v % dsize for v in indices]
|
||
|
|
||
|
# subsample
|
||
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||
|
assert len(indices) == self.num_samples
|
||
|
|
||
|
return iter(indices)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.num_samples
|
||
|
|
||
|
def set_epoch(self, epoch):
|
||
|
self.epoch = epoch
|