forked from mrq/DL-Art-School
10 lines
296 B
Python
10 lines
296 B
Python
|
import onnxruntime
|
||
|
import numpy as np
|
||
|
import time
|
||
|
|
||
|
session = onnxruntime.InferenceSession("../results/gen.onnx")
|
||
|
v = np.random.randn(1,3,1700,1500)
|
||
|
st = time.time()
|
||
|
prediction = session.run(None, {"lr_input": v.astype(np.float32)})
|
||
|
print("Took %f" % (time.time() - st))
|
||
|
print(prediction[0].shape)
|