forked from mrq/DL-Art-School
89 lines
3.8 KiB
Python
89 lines
3.8 KiB
Python
|
from data.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from bisect import bisect_left
|
||
|
import os.path as osp
|
||
|
|
||
|
class MultiFrameDataset(BaseUnsupervisedImageDataset):
|
||
|
def __init__(self, opt):
|
||
|
super(MultiFrameDataset, self).__init__(opt)
|
||
|
self.num_frames = opt['num_frames']
|
||
|
|
||
|
def chunk_name(self, i):
|
||
|
return osp.basename(self.chunks[i].path)
|
||
|
|
||
|
def get_sequential_image_paths_from(self, chunk_index, chunk_offset):
|
||
|
im_name = self.chunk_name(chunk_index)
|
||
|
source_name = im_name[:-12]
|
||
|
frames_needed = self.num_frames - 1
|
||
|
# Search backwards for the frames needed. We are assuming that every video in the dataset has at least frames_needed frames.
|
||
|
search_idx = chunk_index-1
|
||
|
while frames_needed > 0:
|
||
|
if source_name in self.chunk_name(search_idx):
|
||
|
frames_needed -= 1
|
||
|
search_idx -= 1
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
# Now build num_frames starting from search_idx.
|
||
|
hqs, refs, masks, centers = [], [], [], []
|
||
|
for i in range(self.num_frames):
|
||
|
h, r, c, m, p = self.chunks[search_idx + i][chunk_offset]
|
||
|
hqs.append(h)
|
||
|
refs.append(r)
|
||
|
masks.append(m)
|
||
|
centers.append(c)
|
||
|
path = p
|
||
|
return hqs, refs, masks, centers, path
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
chunk_ind = bisect_left(self.starting_indices, item)
|
||
|
chunk_ind = chunk_ind if chunk_ind < len(self.starting_indices) and self.starting_indices[chunk_ind] == item else chunk_ind-1
|
||
|
hqs, refs, masks, centers, path = self.get_sequential_image_paths_from(chunk_ind, item-self.starting_indices[chunk_ind])
|
||
|
|
||
|
hs, hrs, hms, hcs = self.resize_hq(hqs, refs, masks, centers)
|
||
|
ls, lrs, lms, lcs = self.synthesize_lq(hs, hrs, hms, hcs)
|
||
|
|
||
|
# Convert to torch tensor
|
||
|
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(np.stack(hs), (0, 3, 1, 2)))).float()
|
||
|
hq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(np.stack(hrs), (0, 3, 1, 2)))).float()
|
||
|
hq_mask = torch.from_numpy(np.ascontiguousarray(np.stack(hms))).unsqueeze(dim=1)
|
||
|
hq_ref = torch.cat([hq_ref, hq_mask], dim=1)
|
||
|
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(np.stack(ls), (0, 3, 1, 2)))).float()
|
||
|
lq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(np.stack(lrs), (0, 3, 1, 2)))).float()
|
||
|
lq_mask = torch.from_numpy(np.ascontiguousarray(np.stack(lms))).unsqueeze(dim=1)
|
||
|
lq_ref = torch.cat([lq_ref, lq_mask], dim=1)
|
||
|
|
||
|
return {'LQ': lq, 'GT': hq, 'gt_fullsize_ref': hq_ref, 'lq_fullsize_ref': lq_ref,
|
||
|
'lq_center': torch.tensor(lcs, dtype=torch.long), 'gt_center': torch.tensor(hcs, dtype=torch.long),
|
||
|
'LQ_path': path, 'GT_path': path}
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
opt = {
|
||
|
'name': 'amalgam',
|
||
|
'paths': ['F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_256_tiled_with_ref'],
|
||
|
'weights': [1],
|
||
|
'target_size': 128,
|
||
|
'force_multiple': 32,
|
||
|
'scale': 2,
|
||
|
'eval': False,
|
||
|
'fixed_corruptions': [],
|
||
|
'random_corruptions': ['color_quantization', 'gaussian_blur', 'motion_blur', 'smooth_blur', 'noise', 'saturation'],
|
||
|
'num_corrupts_per_image': 1,
|
||
|
'num_frames': 10
|
||
|
}
|
||
|
|
||
|
ds = MultiFrameDataset(opt)
|
||
|
import os
|
||
|
os.makedirs("debug", exist_ok=True)
|
||
|
for i in range(100000, len(ds)):
|
||
|
import random
|
||
|
o = ds[random.randint(0, 1000000)]
|
||
|
k = 'gt_fullsize_ref'
|
||
|
v = o[k]
|
||
|
if 'path' not in k and 'center' not in k:
|
||
|
fr, f, h, w = v.shape
|
||
|
for j in range(fr):
|
||
|
import torchvision
|
||
|
torchvision.utils.save_image(v[j].unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, j))
|