forked from mrq/DL-Art-School
126 lines
4.9 KiB
Python
126 lines
4.9 KiB
Python
|
import functools
|
||
|
import math
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.nn import init, Conv2d
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
class SwitchedConv(nn.Module):
|
||
|
def __init__(self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: int,
|
||
|
switch_breadth: int,
|
||
|
stride: int = 1,
|
||
|
padding: int = 0,
|
||
|
dilation: int = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros',
|
||
|
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
|
||
|
coupler_dim_in: int = 0):
|
||
|
super().__init__()
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
self.padding = padding
|
||
|
self.dilation = dilation
|
||
|
self.padding_mode = padding_mode
|
||
|
self.groups = groups
|
||
|
|
||
|
if include_coupler:
|
||
|
self.coupler = Conv2d(coupler_dim_in, switch_breadth, kernel_size=1)
|
||
|
else:
|
||
|
self.coupler = None
|
||
|
|
||
|
self.weights = nn.ParameterList([nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) for _ in range(switch_breadth)])
|
||
|
if bias:
|
||
|
self.bias = nn.Parameter(torch.Tensor(out_channels))
|
||
|
else:
|
||
|
self.register_parameter('bias', None)
|
||
|
self.reset_parameters()
|
||
|
|
||
|
def reset_parameters(self) -> None:
|
||
|
for w in self.weights:
|
||
|
init.kaiming_uniform_(w, a=math.sqrt(5))
|
||
|
if self.bias is not None:
|
||
|
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weights[0])
|
||
|
bound = 1 / math.sqrt(fan_in)
|
||
|
init.uniform_(self.bias, -bound, bound)
|
||
|
|
||
|
def forward(self, inp, selector):
|
||
|
if self.coupler:
|
||
|
selector = F.softmax(self.coupler(selector), dim=1)
|
||
|
out_shape = [s // self.stride for s in inp.shape[2:]]
|
||
|
if selector.shape[2] != out_shape[0] or selector.shape[3] != out_shape[1]:
|
||
|
selector = F.interpolate(selector, size=out_shape, mode="nearest")
|
||
|
|
||
|
conv_results = []
|
||
|
for i, w in enumerate(self.weights):
|
||
|
conv_results.append(F.conv2d(inp, w, self.bias, self.stride, self.padding, self.dilation, self.groups) * selector[:, i].unsqueeze(1))
|
||
|
return torch.stack(conv_results, dim=-1).sum(dim=-1)
|
||
|
|
||
|
|
||
|
|
||
|
# Given a state_dict and the module that that sd belongs to, strips out all Conv2d.weight parameters and replaces them
|
||
|
# with the equivalent SwitchedConv.weight parameters. Does not create coupler params.
|
||
|
def convert_conv_net_state_dict_to_switched_conv(module, switch_breadth, ignore_list=[]):
|
||
|
state_dict = module.state_dict()
|
||
|
for name, m in module.named_modules():
|
||
|
ignored = False
|
||
|
for smod in ignore_list:
|
||
|
if smod in name:
|
||
|
ignored = True
|
||
|
continue
|
||
|
if ignored:
|
||
|
continue
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
if name == '':
|
||
|
basename = 'weight'
|
||
|
modname = 'weights'
|
||
|
else:
|
||
|
basename = f'{name}.weight'
|
||
|
modname = f'{name}.weights'
|
||
|
cnv_weights = state_dict[basename]
|
||
|
del state_dict[basename]
|
||
|
for j in range(switch_breadth):
|
||
|
state_dict[f'{modname}.{j}'] = cnv_weights.clone()
|
||
|
return state_dict
|
||
|
|
||
|
|
||
|
def test_net():
|
||
|
base_conv = Conv2d(32, 64, 3, stride=2, padding=1, bias=True).to('cuda')
|
||
|
mod_conv = SwitchedConv(32, 64, 3, switch_breadth=8, stride=2, padding=1, bias=True, include_coupler=True, coupler_dim_in=128).to('cuda')
|
||
|
mod_sd = convert_conv_net_state_dict_to_switched_conv(base_conv, 8)
|
||
|
mod_conv.load_state_dict(mod_sd, strict=False)
|
||
|
inp = torch.randn((8,32,128,128), device='cuda')
|
||
|
sel = torch.randn((8,128,32,32), device='cuda')
|
||
|
out1 = base_conv(inp)
|
||
|
out2 = mod_conv(inp, sel)
|
||
|
assert(torch.max(torch.abs(out1-out2)) < 1e-6)
|
||
|
|
||
|
def perform_conversion():
|
||
|
sd = torch.load("../experiments/rrdb_imgset_226500_generator.pth")
|
||
|
load_net_clean = OrderedDict() # remove unnecessary 'module.'
|
||
|
for k, v in sd.items():
|
||
|
if k.startswith('module.'):
|
||
|
load_net_clean[k.replace('module.', '')] = v
|
||
|
else:
|
||
|
load_net_clean[k] = v
|
||
|
sd = load_net_clean
|
||
|
import models.RRDBNet_arch as rrdb
|
||
|
block = functools.partial(rrdb.RRDBWithBypass)
|
||
|
mod = rrdb.RRDBNet(in_channels=3, out_channels=3,
|
||
|
mid_channels=64, num_blocks=23, body_block=block, scale=2, initial_stride=2)
|
||
|
mod.load_state_dict(sd)
|
||
|
converted = convert_conv_net_state_dict_to_switched_conv(mod, 8, ['body.','conv_first','resnet_encoder'])
|
||
|
torch.save(converted, "../experiments/rrdb_imgset_226500_generator_converted.pth")
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
perform_conversion()
|