2020-06-16 17:23:50 +00:00
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from switched_conv import BareConvSwitch, compute_attention_specificity
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import functools
|
2020-06-22 16:40:16 +00:00
|
|
|
from collections import OrderedDict
|
2020-06-16 17:23:50 +00:00
|
|
|
from models.archs.arch_util import initialize_weights
|
2020-06-16 19:24:07 +00:00
|
|
|
from switched_conv_util import save_attention_to_image
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-07-01 15:54:29 +00:00
|
|
|
''' Convenience class with Conv->BN->ReLU. Includes weight initialization and auto-padding for standard
|
|
|
|
kernel sizes. '''
|
|
|
|
class ConvBnRelu(nn.Module):
|
|
|
|
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, relu=True, bn=True, bias=True):
|
|
|
|
super(ConvBnRelu, self).__init__()
|
|
|
|
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
|
|
|
|
assert kernel_size in padding_map.keys()
|
|
|
|
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size], bias=bias)
|
|
|
|
if bn:
|
|
|
|
self.bn = nn.BatchNorm2d(filters_out)
|
|
|
|
else:
|
|
|
|
self.bn = None
|
|
|
|
if relu:
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
else:
|
|
|
|
self.relu = None
|
|
|
|
|
|
|
|
# Init params.
|
|
|
|
for m in self.modules():
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu' if self.relu else 'linear')
|
|
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
|
|
nn.init.constant_(m.weight, 1)
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
if self.bn:
|
|
|
|
x = self.bn(x)
|
|
|
|
if self.relu:
|
|
|
|
return self.relu(x)
|
|
|
|
else:
|
|
|
|
return x
|
|
|
|
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-07-01 15:54:29 +00:00
|
|
|
''' Convenience class with Conv->BN->ReLU. Includes weight initialization and auto-padding for standard
|
|
|
|
kernel sizes. '''
|
2020-06-16 17:23:50 +00:00
|
|
|
class ConvBnLelu(nn.Module):
|
2020-07-01 15:54:29 +00:00
|
|
|
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True, bn=True, bias=True):
|
2020-06-16 17:23:50 +00:00
|
|
|
super(ConvBnLelu, self).__init__()
|
|
|
|
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
|
|
|
|
assert kernel_size in padding_map.keys()
|
2020-07-01 15:54:29 +00:00
|
|
|
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size], bias=bias)
|
2020-06-19 22:52:56 +00:00
|
|
|
if bn:
|
|
|
|
self.bn = nn.BatchNorm2d(filters_out)
|
|
|
|
else:
|
|
|
|
self.bn = None
|
2020-06-16 17:23:50 +00:00
|
|
|
if lelu:
|
|
|
|
self.lelu = nn.LeakyReLU(negative_slope=.1)
|
|
|
|
else:
|
|
|
|
self.lelu = None
|
|
|
|
|
2020-06-30 02:26:51 +00:00
|
|
|
# Init params.
|
|
|
|
for m in self.modules():
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
nn.init.kaiming_normal_(m.weight, a=.1, mode='fan_out', nonlinearity='leaky_relu' if self.lelu else 'linear')
|
|
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
|
|
nn.init.constant_(m.weight, 1)
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
2020-06-16 17:23:50 +00:00
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
2020-06-19 22:52:56 +00:00
|
|
|
if self.bn:
|
|
|
|
x = self.bn(x)
|
2020-06-16 17:23:50 +00:00
|
|
|
if self.lelu:
|
|
|
|
return self.lelu(x)
|
|
|
|
else:
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
2020-06-29 03:21:57 +00:00
|
|
|
class MultiConvBlock(nn.Module):
|
2020-06-30 19:52:47 +00:00
|
|
|
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, scale_init=1, bn=False):
|
2020-06-17 23:18:28 +00:00
|
|
|
assert depth >= 2
|
2020-06-29 03:21:57 +00:00
|
|
|
super(MultiConvBlock, self).__init__()
|
2020-06-23 16:16:02 +00:00
|
|
|
self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01))
|
2020-07-01 15:54:29 +00:00
|
|
|
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False)] +
|
|
|
|
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False) for i in range(depth-2)] +
|
|
|
|
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False)])
|
2020-06-29 03:21:57 +00:00
|
|
|
self.scale = nn.Parameter(torch.full((1,), fill_value=scale_init))
|
2020-06-16 17:23:50 +00:00
|
|
|
self.bias = nn.Parameter(torch.zeros(1))
|
|
|
|
|
2020-06-23 16:16:02 +00:00
|
|
|
def forward(self, x, noise=None):
|
|
|
|
if noise is not None:
|
|
|
|
noise = noise * self.noise_scale
|
|
|
|
x = x + noise
|
2020-06-16 17:23:50 +00:00
|
|
|
for m in self.bnconvs:
|
|
|
|
x = m.forward(x)
|
|
|
|
return x * self.scale + self.bias
|
|
|
|
|
|
|
|
|
2020-06-16 20:19:12 +00:00
|
|
|
# VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation
|
|
|
|
# Doubles the input filter count.
|
2020-06-16 17:23:50 +00:00
|
|
|
class HalvingProcessingBlock(nn.Module):
|
|
|
|
def __init__(self, filters):
|
|
|
|
super(HalvingProcessingBlock, self).__init__()
|
2020-07-01 17:33:32 +00:00
|
|
|
self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False)
|
|
|
|
self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False)
|
2020-06-16 17:23:50 +00:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.bnconv1(x)
|
|
|
|
return self.bnconv2(x)
|
|
|
|
|
|
|
|
|
2020-06-22 16:40:16 +00:00
|
|
|
# Creates a nested series of convolutional blocks. Each block processes the input data in-place and adds
|
|
|
|
# filter_growth filters. Return is (nn.Sequential, ending_filters)
|
|
|
|
def create_sequential_growing_processing_block(filters_init, filter_growth, num_convs):
|
|
|
|
convs = []
|
|
|
|
current_filters = filters_init
|
|
|
|
for i in range(num_convs):
|
2020-07-01 18:08:09 +00:00
|
|
|
convs.append(ConvBnRelu(current_filters, current_filters + filter_growth, bn=True, bias=False))
|
2020-06-22 16:40:16 +00:00
|
|
|
current_filters += filter_growth
|
|
|
|
return nn.Sequential(*convs), current_filters
|
|
|
|
|
|
|
|
|
2020-06-16 17:23:50 +00:00
|
|
|
class SwitchComputer(nn.Module):
|
2020-06-23 15:41:12 +00:00
|
|
|
def __init__(self, channels_in, filters, growth, transform_block, transform_count, reduction_blocks, processing_blocks=0,
|
2020-06-23 16:16:02 +00:00
|
|
|
init_temp=20, enable_negative_transforms=False, add_scalable_noise_to_transforms=False):
|
2020-06-16 17:23:50 +00:00
|
|
|
super(SwitchComputer, self).__init__()
|
2020-06-23 15:41:12 +00:00
|
|
|
self.enable_negative_transforms = enable_negative_transforms
|
|
|
|
|
2020-06-16 17:23:50 +00:00
|
|
|
self.filter_conv = ConvBnLelu(channels_in, filters)
|
2020-06-16 20:19:12 +00:00
|
|
|
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(filters * 2 ** i) for i in range(reduction_blocks)])
|
|
|
|
final_filters = filters * 2 ** reduction_blocks
|
2020-06-22 16:40:16 +00:00
|
|
|
self.processing_blocks, final_filters = create_sequential_growing_processing_block(final_filters, growth, processing_blocks)
|
2020-06-16 17:23:50 +00:00
|
|
|
proc_block_filters = max(final_filters // 2, transform_count)
|
2020-06-22 23:23:36 +00:00
|
|
|
self.proc_switch_conv = ConvBnLelu(final_filters, proc_block_filters, bn=False)
|
2020-06-23 15:41:12 +00:00
|
|
|
tc = transform_count
|
|
|
|
if self.enable_negative_transforms:
|
|
|
|
tc = transform_count * 2
|
|
|
|
self.final_switch_conv = nn.Conv2d(proc_block_filters, tc, 1, 1, 0)
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-06-23 15:41:12 +00:00
|
|
|
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
2020-06-23 16:16:02 +00:00
|
|
|
self.add_noise = add_scalable_noise_to_transforms
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-06-17 23:18:28 +00:00
|
|
|
# And the switch itself, including learned scalars
|
2020-06-16 17:23:50 +00:00
|
|
|
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
2020-06-17 23:18:28 +00:00
|
|
|
self.scale = nn.Parameter(torch.ones(1))
|
|
|
|
self.bias = nn.Parameter(torch.zeros(1))
|
2020-06-16 17:23:50 +00:00
|
|
|
|
|
|
|
def forward(self, x, output_attention_weights=False):
|
2020-06-23 16:16:02 +00:00
|
|
|
if self.add_noise:
|
|
|
|
rand_feature = torch.randn_like(x)
|
|
|
|
xformed = [t.forward(x, rand_feature) for t in self.transforms]
|
|
|
|
else:
|
|
|
|
xformed = [t.forward(x) for t in self.transforms]
|
2020-06-23 15:41:12 +00:00
|
|
|
if self.enable_negative_transforms:
|
|
|
|
xformed.extend([-t for t in xformed])
|
2020-06-16 17:23:50 +00:00
|
|
|
|
|
|
|
multiplexer = self.filter_conv(x)
|
2020-06-16 20:19:12 +00:00
|
|
|
for block in self.reduction_blocks:
|
|
|
|
multiplexer = block.forward(multiplexer)
|
|
|
|
for block in self.processing_blocks:
|
2020-06-16 17:23:50 +00:00
|
|
|
multiplexer = block.forward(multiplexer)
|
|
|
|
multiplexer = self.proc_switch_conv(multiplexer)
|
|
|
|
multiplexer = self.final_switch_conv.forward(multiplexer)
|
|
|
|
# Interpolate the multiplexer across the entire shape of the image.
|
2020-06-16 22:53:57 +00:00
|
|
|
multiplexer = F.interpolate(multiplexer, size=x.shape[2:], mode='nearest')
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-06-17 23:18:28 +00:00
|
|
|
outputs, attention = self.switch(xformed, multiplexer, True)
|
|
|
|
outputs = outputs * self.scale + self.bias
|
|
|
|
if output_attention_weights:
|
|
|
|
return outputs, attention
|
|
|
|
else:
|
|
|
|
return outputs
|
2020-06-16 17:23:50 +00:00
|
|
|
|
|
|
|
def set_temperature(self, temp):
|
|
|
|
self.switch.set_attention_temperature(temp)
|
|
|
|
|
2020-06-16 19:24:07 +00:00
|
|
|
|
2020-06-25 01:49:37 +00:00
|
|
|
class ConfigurableSwitchComputer(nn.Module):
|
2020-07-01 21:25:54 +00:00
|
|
|
def __init__(self, base_filters, multiplexer_net, transform_block, transform_count, init_temp=20,
|
|
|
|
enable_negative_transforms=False, add_scalable_noise_to_transforms=False, init_scalar=1):
|
2020-06-25 01:49:37 +00:00
|
|
|
super(ConfigurableSwitchComputer, self).__init__()
|
|
|
|
self.enable_negative_transforms = enable_negative_transforms
|
|
|
|
|
|
|
|
tc = transform_count
|
|
|
|
if self.enable_negative_transforms:
|
|
|
|
tc = transform_count * 2
|
|
|
|
self.multiplexer = multiplexer_net(tc)
|
|
|
|
|
|
|
|
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
|
|
|
self.add_noise = add_scalable_noise_to_transforms
|
|
|
|
|
|
|
|
# And the switch itself, including learned scalars
|
|
|
|
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
2020-07-01 21:25:54 +00:00
|
|
|
self.post_switch_conv = ConvBnLelu(base_filters, base_filters, bn=False, bias=False)
|
|
|
|
self.scale = nn.Parameter(torch.full((1,), float(init_scalar)))
|
2020-06-25 01:49:37 +00:00
|
|
|
self.bias = nn.Parameter(torch.zeros(1))
|
|
|
|
|
|
|
|
def forward(self, x, output_attention_weights=False):
|
2020-07-01 21:25:54 +00:00
|
|
|
identity = x
|
2020-06-25 01:49:37 +00:00
|
|
|
if self.add_noise:
|
|
|
|
rand_feature = torch.randn_like(x)
|
|
|
|
xformed = [t.forward(x, rand_feature) for t in self.transforms]
|
|
|
|
else:
|
|
|
|
xformed = [t.forward(x) for t in self.transforms]
|
|
|
|
if self.enable_negative_transforms:
|
|
|
|
xformed.extend([-t for t in xformed])
|
|
|
|
|
|
|
|
m = self.multiplexer(x)
|
|
|
|
# Interpolate the multiplexer across the entire shape of the image.
|
|
|
|
m = F.interpolate(m, size=x.shape[2:], mode='nearest')
|
|
|
|
|
|
|
|
outputs, attention = self.switch(xformed, m, True)
|
2020-07-01 21:25:54 +00:00
|
|
|
outputs = identity + outputs
|
|
|
|
outputs = identity + self.post_switch_conv(outputs)
|
2020-06-25 01:49:37 +00:00
|
|
|
outputs = outputs * self.scale + self.bias
|
|
|
|
if output_attention_weights:
|
|
|
|
return outputs, attention
|
|
|
|
else:
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def set_temperature(self, temp):
|
|
|
|
self.switch.set_attention_temperature(temp)
|
|
|
|
|
|
|
|
|
2020-06-26 00:17:05 +00:00
|
|
|
class ConvBasisMultiplexer(nn.Module):
|
|
|
|
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth, multiplexer_channels, use_bn=True):
|
|
|
|
super(ConvBasisMultiplexer, self).__init__()
|
2020-07-01 18:08:09 +00:00
|
|
|
self.filter_conv = ConvBnRelu(input_channels, base_filters, bias=True)
|
2020-06-26 00:17:05 +00:00
|
|
|
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
|
|
|
|
reduction_filters = base_filters * 2 ** reductions
|
|
|
|
self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth)
|
|
|
|
|
|
|
|
gap = self.output_filter_count - multiplexer_channels
|
2020-07-01 18:08:09 +00:00
|
|
|
self.cbl1 = ConvBnRelu(self.output_filter_count, self.output_filter_count - (gap // 2), bn=use_bn, bias=False)
|
|
|
|
self.cbl2 = ConvBnRelu(self.output_filter_count - (gap // 2), self.output_filter_count - (3 * gap // 4), bn=use_bn, bias=False)
|
|
|
|
self.cbl3 = ConvBnRelu(self.output_filter_count - (3 * gap // 4), multiplexer_channels, bias=True)
|
2020-06-26 00:17:05 +00:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.filter_conv(x)
|
|
|
|
x = self.reduction_blocks(x)
|
|
|
|
x = self.processing_blocks(x)
|
|
|
|
x = self.cbl1(x)
|
|
|
|
x = self.cbl2(x)
|
|
|
|
x = self.cbl3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
2020-06-29 03:21:57 +00:00
|
|
|
class ConvBasisMultiplexerReducer(nn.Module):
|
2020-06-25 01:49:37 +00:00
|
|
|
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth):
|
2020-06-29 03:21:57 +00:00
|
|
|
super(ConvBasisMultiplexerReducer, self).__init__()
|
2020-06-25 01:49:37 +00:00
|
|
|
self.filter_conv = ConvBnLelu(input_channels, base_filters)
|
|
|
|
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
|
|
|
|
reduction_filters = base_filters * 2 ** reductions
|
|
|
|
self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.filter_conv(x)
|
|
|
|
x = self.reduction_blocks(x)
|
|
|
|
x = self.processing_blocks(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
2020-06-26 00:17:05 +00:00
|
|
|
class ConvBasisMultiplexerLeaf(nn.Module):
|
2020-06-25 01:49:37 +00:00
|
|
|
def __init__(self, base, filters, multiplexer_channels, use_bn=False):
|
2020-06-26 00:17:05 +00:00
|
|
|
super(ConvBasisMultiplexerLeaf, self).__init__()
|
2020-06-25 01:49:37 +00:00
|
|
|
assert(filters > multiplexer_channels)
|
|
|
|
gap = filters - multiplexer_channels
|
|
|
|
assert(gap % 4 == 0)
|
|
|
|
self.base = base
|
|
|
|
self.cbl1 = ConvBnLelu(filters, filters - (gap // 4), bn=use_bn)
|
|
|
|
self.cbl2 = ConvBnLelu(filters - (gap // 4), filters - (gap // 2), bn=use_bn)
|
|
|
|
self.cbl3 = ConvBnLelu(filters - (gap // 2), multiplexer_channels)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.base(x)
|
|
|
|
x = self.cbl1(x)
|
|
|
|
x = self.cbl2(x)
|
|
|
|
x = self.cbl3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
2020-06-16 19:24:07 +00:00
|
|
|
class ConfigurableSwitchedResidualGenerator(nn.Module):
|
2020-06-22 16:40:16 +00:00
|
|
|
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
2020-06-18 17:29:31 +00:00
|
|
|
trans_layers, trans_filters_mid, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
2020-06-23 16:16:02 +00:00
|
|
|
heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False,
|
|
|
|
add_scalable_noise_to_transforms=False):
|
2020-06-16 19:24:07 +00:00
|
|
|
super(ConfigurableSwitchedResidualGenerator, self).__init__()
|
|
|
|
switches = []
|
2020-06-22 16:40:16 +00:00
|
|
|
for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers, mid_filters in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, trans_filters_mid):
|
2020-06-29 03:21:57 +00:00
|
|
|
switches.append(SwitchComputer(3, filters, growth, functools.partial(MultiConvBlock, 3, mid_filters, 3, kernel_size=kernel, depth=layers), trans_count, sw_reduce, sw_proc, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
2020-06-16 19:24:07 +00:00
|
|
|
initialize_weights(switches, 1)
|
|
|
|
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
2020-06-16 21:54:37 +00:00
|
|
|
initialize_weights([s.transforms for s in switches], .2 / len(switches))
|
2020-06-16 19:24:07 +00:00
|
|
|
self.switches = nn.ModuleList(switches)
|
|
|
|
self.transformation_counts = trans_counts
|
|
|
|
self.init_temperature = initial_temp
|
|
|
|
self.final_temperature_step = final_temperature_step
|
2020-06-18 17:29:31 +00:00
|
|
|
self.heightened_temp_min = heightened_temp_min
|
|
|
|
self.heightened_final_step = heightened_final_step
|
2020-06-17 23:18:28 +00:00
|
|
|
self.attentions = None
|
2020-06-19 15:18:30 +00:00
|
|
|
self.upsample_factor = upsample_factor
|
2020-06-16 19:24:07 +00:00
|
|
|
|
|
|
|
def forward(self, x):
|
2020-06-19 15:18:30 +00:00
|
|
|
# This network is entirely a "repair" network and operates on full-resolution images. Upsample first if that
|
|
|
|
# is called for, then repair.
|
|
|
|
if self.upsample_factor > 1:
|
|
|
|
x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest")
|
|
|
|
|
2020-06-16 19:24:07 +00:00
|
|
|
self.attentions = []
|
|
|
|
for i, sw in enumerate(self.switches):
|
2020-06-16 22:53:57 +00:00
|
|
|
sw_out, att = sw.forward(x, True)
|
|
|
|
x = x + sw_out
|
2020-06-16 19:24:07 +00:00
|
|
|
self.attentions.append(att)
|
2020-06-16 22:22:56 +00:00
|
|
|
return x,
|
2020-06-16 19:24:07 +00:00
|
|
|
|
|
|
|
def set_temperature(self, temp):
|
|
|
|
[sw.set_temperature(temp) for sw in self.switches]
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-06-17 23:18:28 +00:00
|
|
|
def update_for_step(self, step, experiments_path='.'):
|
|
|
|
if self.attentions:
|
|
|
|
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
2020-06-19 15:18:30 +00:00
|
|
|
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
2020-06-18 22:08:07 +00:00
|
|
|
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
|
|
|
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
2020-06-18 17:29:31 +00:00
|
|
|
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
|
|
|
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
2020-06-18 22:08:07 +00:00
|
|
|
# The "gap" will represent the steps that need to be traveled as a linear function.
|
|
|
|
h_gap = 1 / self.heightened_temp_min
|
|
|
|
temp = h_gap * h_steps_current / h_steps_total
|
|
|
|
# Invert temperature to represent reality on this side of the curve
|
|
|
|
temp = 1 / temp
|
2020-06-17 23:18:28 +00:00
|
|
|
self.set_temperature(temp)
|
2020-06-18 17:29:31 +00:00
|
|
|
if step % 50 == 0:
|
2020-06-18 22:08:07 +00:00
|
|
|
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
|
2020-06-16 17:23:50 +00:00
|
|
|
|
2020-06-17 23:18:28 +00:00
|
|
|
def get_debug_values(self, step):
|
|
|
|
temp = self.switches[0].switch.temperature
|
2020-06-16 22:22:56 +00:00
|
|
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
|
|
|
means = [i[0] for i in mean_hists]
|
|
|
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
2020-06-16 17:23:50 +00:00
|
|
|
val = {"switch_temperature": temp}
|
2020-06-16 22:22:56 +00:00
|
|
|
for i in range(len(means)):
|
|
|
|
val["switch_%i_specificity" % (i,)] = means[i]
|
|
|
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
2020-06-19 15:18:30 +00:00
|
|
|
return val
|
2020-06-25 01:49:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ConfigurableSwitchedResidualGenerator2(nn.Module):
|
|
|
|
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
2020-06-26 00:17:05 +00:00
|
|
|
trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
2020-06-25 01:49:37 +00:00
|
|
|
heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False,
|
|
|
|
add_scalable_noise_to_transforms=False):
|
|
|
|
super(ConfigurableSwitchedResidualGenerator2, self).__init__()
|
|
|
|
switches = []
|
2020-06-26 00:17:05 +00:00
|
|
|
self.initial_conv = ConvBnLelu(3, transformation_filters, bn=False)
|
2020-07-01 18:08:09 +00:00
|
|
|
self.proc_conv = ConvBnLelu(transformation_filters, transformation_filters, bn=False)
|
2020-07-01 02:57:40 +00:00
|
|
|
self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False, lelu=False)
|
2020-06-26 00:17:05 +00:00
|
|
|
for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
|
|
|
|
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, filters, growth, sw_reduce, sw_proc, trans_count)
|
2020-07-01 21:25:54 +00:00
|
|
|
switches.append(ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
|
|
|
functools.partial(MultiConvBlock, transformation_filters, transformation_filters, transformation_filters, kernel_size=kernel, depth=layers),
|
|
|
|
trans_count, initial_temp, enable_negative_transforms=enable_negative_transforms,
|
|
|
|
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms, init_scalar=.01))
|
2020-06-25 01:49:37 +00:00
|
|
|
self.switches = nn.ModuleList(switches)
|
|
|
|
self.transformation_counts = trans_counts
|
|
|
|
self.init_temperature = initial_temp
|
|
|
|
self.final_temperature_step = final_temperature_step
|
|
|
|
self.heightened_temp_min = heightened_temp_min
|
|
|
|
self.heightened_final_step = heightened_final_step
|
|
|
|
self.attentions = None
|
|
|
|
self.upsample_factor = upsample_factor
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
2020-06-26 00:17:05 +00:00
|
|
|
x = self.initial_conv(x)
|
|
|
|
|
2020-06-25 01:49:37 +00:00
|
|
|
self.attentions = []
|
2020-07-01 21:25:54 +00:00
|
|
|
for i, sw in enumerate(self.switches):
|
|
|
|
x, att = sw.forward(x, True)
|
2020-06-25 01:49:37 +00:00
|
|
|
self.attentions.append(att)
|
2020-06-26 00:17:05 +00:00
|
|
|
|
2020-07-01 02:57:40 +00:00
|
|
|
if self.upsample_factor > 1:
|
|
|
|
x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest")
|
|
|
|
|
|
|
|
x = self.proc_conv(x)
|
2020-06-26 00:17:05 +00:00
|
|
|
x = self.final_conv(x)
|
2020-07-01 18:08:09 +00:00
|
|
|
return x,
|
2020-06-25 01:49:37 +00:00
|
|
|
|
|
|
|
def set_temperature(self, temp):
|
|
|
|
[sw.set_temperature(temp) for sw in self.switches]
|
|
|
|
|
|
|
|
def update_for_step(self, step, experiments_path='.'):
|
|
|
|
if self.attentions:
|
|
|
|
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
|
|
|
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
|
|
|
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
|
|
|
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
|
|
|
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
|
|
|
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
|
|
|
# The "gap" will represent the steps that need to be traveled as a linear function.
|
|
|
|
h_gap = 1 / self.heightened_temp_min
|
|
|
|
temp = h_gap * h_steps_current / h_steps_total
|
|
|
|
# Invert temperature to represent reality on this side of the curve
|
|
|
|
temp = 1 / temp
|
|
|
|
self.set_temperature(temp)
|
|
|
|
if step % 50 == 0:
|
|
|
|
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
|
|
|
|
|
|
|
|
def get_debug_values(self, step):
|
|
|
|
temp = self.switches[0].switch.temperature
|
|
|
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
|
|
|
means = [i[0] for i in mean_hists]
|
|
|
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
|
|
|
val = {"switch_temperature": temp}
|
|
|
|
for i in range(len(means)):
|
|
|
|
val["switch_%i_specificity" % (i,)] = means[i]
|
|
|
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
|
|
|
return val
|