forked from mrq/DL-Art-School
126 lines
4.8 KiB
Python
126 lines
4.8 KiB
Python
|
import random
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
import torch
|
||
|
import torch.utils.data as data
|
||
|
import data.util as util
|
||
|
from PIL import Image, ImageOps
|
||
|
from io import BytesIO
|
||
|
import torchvision.transforms.functional as F
|
||
|
|
||
|
|
||
|
# Reads full-quality images and pulls tiles at regular zoom intervals from them. Only usable for training purposes.
|
||
|
class MultiScaleDataset(data.Dataset):
|
||
|
def __init__(self, opt):
|
||
|
super(MultiScaleDataset, self).__init__()
|
||
|
self.opt = opt
|
||
|
self.data_type = 'img'
|
||
|
self.tile_size = self.opt['hq_tile_size']
|
||
|
self.num_scales = self.opt['num_scales']
|
||
|
self.hq_size_cap = self.tile_size * 2 ** self.num_scales
|
||
|
self.scale = self.opt['scale']
|
||
|
self.paths_hq, self.sizes_hq = util.get_image_paths(self.data_type, opt['dataroot'], [1])
|
||
|
|
||
|
# Selects the smallest dimension from the image and crops it randomly so the other dimension matches. The cropping
|
||
|
# offset from center is chosen on a normal probability curve.
|
||
|
def get_square_image(self, image):
|
||
|
h, w, _ = image.shape
|
||
|
if h == w:
|
||
|
return image
|
||
|
offset = max(min(np.random.normal(scale=.3), 1.0), -1.0)
|
||
|
if h > w:
|
||
|
diff = h - w
|
||
|
center = diff // 2
|
||
|
top = int(center + offset * (center - 2))
|
||
|
return image[top:top+w, :, :]
|
||
|
else:
|
||
|
diff = w - h
|
||
|
center = diff // 2
|
||
|
left = int(center + offset * (center - 2))
|
||
|
return image[:, left:left+h, :]
|
||
|
|
||
|
def recursively_extract_patches(self, input_img, result_list, depth):
|
||
|
if depth > self.num_scales:
|
||
|
return
|
||
|
patch_size = self.hq_size_cap // (2 ** depth)
|
||
|
# First pull the four sub-patches.
|
||
|
patches = [input_img[:patch_size, :patch_size],
|
||
|
input_img[:patch_size, patch_size:],
|
||
|
input_img[patch_size:, :patch_size],
|
||
|
input_img[patch_size:, patch_size:]]
|
||
|
result_list.extend([cv2.resize(p, (self.tile_size, self.tile_size), interpolation=cv2.INTER_LINEAR) for p in patches])
|
||
|
for p in patches:
|
||
|
self.recursively_extract_patches(p, result_list, depth+1)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
# get full size image
|
||
|
full_path = self.paths_hq[index % len(self.paths_hq)]
|
||
|
img_full = util.read_img(None, full_path, None)
|
||
|
img_full = util.channel_convert(img_full.shape[2], 'RGB', [img_full])[0]
|
||
|
img_full = util.augment([img_full], True, True)[0]
|
||
|
img_full = self.get_square_image(img_full)
|
||
|
img_full = cv2.resize(img_full, (self.hq_size_cap, self.hq_size_cap), interpolation=cv2.INTER_LINEAR)
|
||
|
patches_hq = [cv2.resize(img_full, (self.tile_size, self.tile_size), interpolation=cv2.INTER_LINEAR)]
|
||
|
self.recursively_extract_patches(img_full, patches_hq, 1)
|
||
|
|
||
|
# BGR to RGB, HWC to CHW, numpy to tensor
|
||
|
if patches_hq[0].shape[2] == 3:
|
||
|
patches_hq = [cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq]
|
||
|
patches_hq = [torch.from_numpy(np.ascontiguousarray(np.transpose(p, (2, 0, 1)))).float() for p in patches_hq]
|
||
|
patches_lq = [torch.nn.functional.interpolate(p.unsqueeze(0), scale_factor=1/self.scale, mode='bilinear').squeeze() for p in patches_hq]
|
||
|
|
||
|
d = {'LQ': patches_lq, 'HQ': patches_hq, 'GT_path': full_path}
|
||
|
return d
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.paths_hq)
|
||
|
|
||
|
|
||
|
def build_multiscale_patch_index_map(depth):
|
||
|
if depth < 0:
|
||
|
return
|
||
|
recursive_list = []
|
||
|
map = (0, recursive_list)
|
||
|
_build_multiscale_patch_index_map(depth, 1, recursive_list)
|
||
|
return map
|
||
|
|
||
|
|
||
|
def _build_multiscale_patch_index_map(depth, ind, recursive_list):
|
||
|
if depth <= 0:
|
||
|
return ind
|
||
|
patches = [(ind+i, []) for i in range(4)]
|
||
|
recursive_list.extend(patches)
|
||
|
ind += 4
|
||
|
for _, p in patches:
|
||
|
ind = _build_multiscale_patch_index_map(depth-1, ind, p)
|
||
|
return ind
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
opt = {
|
||
|
'name': 'amalgam',
|
||
|
'dataroot': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\images'],
|
||
|
'num_scales': 4,
|
||
|
'scale': 2,
|
||
|
'hq_tile_size': 128
|
||
|
}
|
||
|
|
||
|
import torchvision
|
||
|
ds = MultiScaleDataset(opt)
|
||
|
import os
|
||
|
os.makedirs("debug", exist_ok=True)
|
||
|
multiscale_map = build_multiscale_patch_index_map(4)
|
||
|
for i in range(900, len(ds)):
|
||
|
quadrant=2
|
||
|
print(i)
|
||
|
o = ds[i]
|
||
|
k = 'HQ'
|
||
|
v = o['HQ']
|
||
|
#for j, img in enumerate(v):
|
||
|
# torchvision.utils.save_image(img.unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, j))
|
||
|
torchvision.utils.save_image(v[0].unsqueeze(0), "debug/%i_%s_0.png" % (i, k))
|
||
|
map_tuple = multiscale_map[1][quadrant]
|
||
|
while map_tuple[1]:
|
||
|
ind = map_tuple[0]
|
||
|
torchvision.utils.save_image(v[ind].unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, ind+1))
|
||
|
map_tuple = map_tuple[1][quadrant]
|