DL-Art-School/codes/models/gpt_voice/gpt_asr_hf.py

137 lines
5.6 KiB
Python
Raw Normal View History

from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from munch import munchify
from transformers import GPT2Model, GPT2Config
from models.gpt_voice.lucidrains_gpt import Transformer
from models.tacotron2.taco_utils import get_mask_from_lengths
from models.tacotron2.text import symbols, sequence_to_text
from trainer.networks import register_model
from utils.util import opt_get
class ResBlock(nn.Module):
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
nn.BatchNorm1d(chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
nn.BatchNorm1d(chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=7, padding=3),
ResBlock(channels//4),
ResBlock(channels//4),
nn.Conv1d(channels//4, channels//2, kernel_size=5, stride=2, padding=2),
nn.BatchNorm1d(channels//2),
nn.ReLU(),
ResBlock(channels//2),
ResBlock(channels//2),
ResBlock(channels//2),
nn.Conv1d(channels//2, channels, kernel_size=5, stride=2, padding=2),
ResBlock(channels),
ResBlock(channels),
ResBlock(channels)
)
def forward(self, x):
return self.encoder(x)
class GptAsrHf(nn.Module):
NUMBER_SYMBOLS = len(symbols)
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS+1
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_frames=1000):
super().__init__()
self.max_mel_frames = max_mel_frames // 4 # Mel frames are reduced by a factor of 4 during encoding.
self.max_symbols_per_phrase = max_symbols_per_phrase
self.model_dim = model_dim
self.max_mel_frames = self.max_mel_frames
self.mel_encoder = MelEncoder(model_dim)
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames
self.gpt = GPT2Model(GPT2Config(vocab_size=self.NUMBER_TEXT_TOKENS,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=model_dim,
n_layer=layers,
n_head=heads))
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
def get_logits(self, mel_inputs, text_targets):
# Pad front and back. Pad at front is the "START" token.
text_targets = F.pad(text_targets, (1,0), value=self.NUMBER_SYMBOLS)
text_targets = F.pad(text_targets, (0, self.max_symbols_per_phrase - text_targets.shape[1]))
text_emb = self.gpt.get_input_embeddings()(text_targets)
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
mel_emb = self.mel_encoder(mel_inputs)
mel_emb = F.pad(mel_emb, (0, self.max_mel_frames - mel_emb.shape[-1]))
mel_emb = mel_emb.permute(0,2,1).contiguous()
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
emb = torch.cat([mel_emb, text_emb], dim=1)
enc = self.gpt(inputs_embeds=emb, return_dict=True).last_hidden_state
text_logits = self.final_norm(enc[:, self.max_mel_frames:])
text_logits = self.text_head(text_logits)
text_logits = text_logits.permute(0,2,1)
return text_logits
def forward(self, mel_inputs, text_targets):
text_logits = self.get_logits(mel_inputs, text_targets)
loss_text = F.cross_entropy(text_logits[:,:,:-1], text_targets[:,1:].long())
return loss_text.mean(), text_logits
@register_model
def register_gpt_asr_hf(opt_net, opt):
return GptAsrHf(**opt_get(opt_net, ['kwargs'], {}))
# Quick script that loads a model and halves the number of layers, then saves that model.
def distill():
gpt = GptAsrHf(max_symbols_per_phrase=250, max_mel_frames=1400, layers=12, model_dim=768, heads=12)
gpt.load_state_dict(torch.load('../experiments/train_gpt_asr_mass/models/21500_mel_gen.pth'))
rc = 0
i = 0
while i < len(gpt.gpt.layers.layers):
if rc % 2 != 0:
del gpt.gpt.layers.layers[i]
else:
i += 1
rc += 1
torch.save(gpt.state_dict(), '../experiments/train_gpt_asr_mass/models/21500_mel_gen_distilled.pth')
if __name__ == '__main__':
gpt = GptAsrHf(max_symbols_per_phrase=100, max_mel_frames=200, layers=6, model_dim=256, heads=2)
l = gpt(torch.randn(2,80,800), torch.randint(high=len(symbols), size=(2,100)))
'''
with torch.no_grad():
t = torch.randn(1,80,800).cuda()
start = time()
s = gpt.inference_beam_topk(t)
print(time()-start)
start = time()
o = gpt.inference_beam_topk(t, fn='inference_beam_opt')
print(time()-start)
'''