forked from mrq/DL-Art-School
13 lines
429 B
Python
13 lines
429 B
Python
|
import torch.nn as nn
|
||
|
|
||
|
|
||
|
def f_conv2d_bias(in_channels, out_channels):
|
||
|
def padding_same(kernel, stride):
|
||
|
return [((k - 1) * s + 1) // 2 for k, s in zip(kernel, stride)]
|
||
|
|
||
|
padding = padding_same([3, 3], [1, 1])
|
||
|
assert padding == [1, 1], padding
|
||
|
return nn.Sequential(
|
||
|
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=[3, 3], stride=1, padding=1,
|
||
|
bias=True))
|