forked from mrq/DL-Art-School
128 lines
4.9 KiB
Python
128 lines
4.9 KiB
Python
|
# Contains implementations from the Mixture of Experts paper and Switch Transformers
|
||
|
|
||
|
|
||
|
# Implements KeepTopK where k=1 from mixture of experts paper.
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from models.switched_conv.switched_conv_hard_routing import RouteTop1
|
||
|
from trainer.losses import ConfigurableLoss
|
||
|
|
||
|
|
||
|
class KeepTop1(torch.autograd.Function):
|
||
|
@staticmethod
|
||
|
def forward(ctx, input):
|
||
|
mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1]).permute(0,3,1,2)
|
||
|
input[mask != 1] = -float('inf')
|
||
|
ctx.save_for_backward(mask)
|
||
|
return input
|
||
|
|
||
|
@staticmethod
|
||
|
def backward(ctx, grad):
|
||
|
import pydevd
|
||
|
pydevd.settrace(suspend=False, trace_only_current_thread=True)
|
||
|
mask = ctx.saved_tensors
|
||
|
grad_input = grad.clone()
|
||
|
grad_input[mask != 1] = 0
|
||
|
return grad_input
|
||
|
|
||
|
class MixtureOfExperts2dRouter(nn.Module):
|
||
|
def __init__(self, num_experts):
|
||
|
super().__init__()
|
||
|
self.num_experts = num_experts
|
||
|
self.wnoise = nn.Parameter(torch.zeros(1, num_experts, 1, 1))
|
||
|
self.wg = nn.Parameter(torch.zeros(1, num_experts, 1, 1))
|
||
|
|
||
|
def forward(self, x):
|
||
|
wg = x * self.wg
|
||
|
wnoise = nn.functional.softplus(x * self.wnoise)
|
||
|
H = wg + torch.randn_like(x) * wnoise
|
||
|
|
||
|
# Produce the load-balancing loss.
|
||
|
eye = torch.eye(self.num_experts, device=x.device).view(1, self.num_experts, self.num_experts, 1, 1)
|
||
|
mask = torch.abs(1 - eye)
|
||
|
b, c, h, w = H.shape
|
||
|
ninf = torch.zeros_like(eye)
|
||
|
ninf[eye == 1] = -float('inf')
|
||
|
H_masked = H.view(b, c, 1, h,
|
||
|
w) * mask + ninf # ninf is necessary because otherwise torch.max() will not pick up negative numbered maxes.
|
||
|
max_excluding = torch.max(H_masked, dim=2)[0]
|
||
|
|
||
|
# load_loss and G are stored as local members to facilitate their use by hard routing regularization losses.
|
||
|
# this is a risky op - it can easily result in memory leakage. Clients *must* use self.reset() below.
|
||
|
self.load_loss = torch.erf((wg - max_excluding) / wnoise)
|
||
|
# self.G = nn.functional.softmax(KeepTop1.apply(H), dim=1) The paper proposes this equation, but performing a softmax on a Top-1 per the paper results in zero gradients into H, so:
|
||
|
self.G = RouteTop1.apply(nn.functional.softmax(H, dim=1)) # This variant can route gradients downstream.
|
||
|
|
||
|
return self.G
|
||
|
|
||
|
# Retrieve the locally stored loss values and delete them from membership (so as to not waste memory)
|
||
|
def reset(self):
|
||
|
G, load = self.G, self.load_loss
|
||
|
del self.G
|
||
|
del self.load_loss
|
||
|
return G, load
|
||
|
|
||
|
|
||
|
# Loss that finds instances of MixtureOfExperts2dRouter in the given network and extracts their custom losses.
|
||
|
class MixtureOfExpertsLoss(ConfigurableLoss):
|
||
|
def __init__(self, opt, env):
|
||
|
super().__init__(opt, env)
|
||
|
self.routers = [] # This is filled in during the first forward() pass and cached from there.
|
||
|
self.first_forward_encountered = False
|
||
|
self.load_weight = opt['load_weight']
|
||
|
self.importance_weight = opt['importance_weight']
|
||
|
|
||
|
def forward(self, net, state):
|
||
|
if not self.first_forward_encountered:
|
||
|
for m in net.modules():
|
||
|
if isinstance(m, MixtureOfExperts2dRouter):
|
||
|
self.routers.append(m)
|
||
|
self.first_forward_encountered = True
|
||
|
|
||
|
l_importance = 0
|
||
|
l_load = 0
|
||
|
for r in self.routers:
|
||
|
G, L = r.reset()
|
||
|
l_importance += G.var().square()
|
||
|
l_load += L.var().square()
|
||
|
return l_importance * self.importance_weight + l_load * self.load_weight
|
||
|
|
||
|
|
||
|
class SwitchTransformersLoadBalancer(nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.norm = SwitchNorm(8, accumulator_size=256)
|
||
|
|
||
|
def forward(self, x):
|
||
|
self.soft = self.norm(nn.functional.softmax(x, dim=1))
|
||
|
self.hard = RouteTop1.apply(self.soft) # This variant can route gradients downstream.
|
||
|
return self.hard
|
||
|
|
||
|
def reset(self):
|
||
|
soft, hard = self.soft, self.hard
|
||
|
del self.soft, self.hard
|
||
|
return soft, hard
|
||
|
|
||
|
|
||
|
class SwitchTransformersLoadBalancingLoss(ConfigurableLoss):
|
||
|
def __init__(self, opt, env):
|
||
|
super().__init__(opt, env)
|
||
|
self.routers = [] # This is filled in during the first forward() pass and cached from there.
|
||
|
self.first_forward_encountered = False
|
||
|
|
||
|
def forward(self, net, state):
|
||
|
if not self.first_forward_encountered:
|
||
|
for m in net.modules():
|
||
|
if isinstance(m, SwitchTransformersLoadBalancer):
|
||
|
self.routers.append(m)
|
||
|
self.first_forward_encountered = True
|
||
|
|
||
|
loss = 0
|
||
|
for r in self.routers:
|
||
|
soft, hard = r.reset()
|
||
|
N = hard.shape[1]
|
||
|
h_mean = hard.mean(dim=[0,2,3])
|
||
|
s_mean = soft.mean(dim=[0,2,3])
|
||
|
loss += torch.dot(h_mean, s_mean) * N
|
||
|
return loss
|