forked from mrq/DL-Art-School
143 lines
5.7 KiB
Python
143 lines
5.7 KiB
Python
|
import math
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
from models.modules.RRDBNet_arch import RRDBNet
|
||
|
from models.modules.FlowUpsamplerNet import FlowUpsamplerNet
|
||
|
import models.modules.thops as thops
|
||
|
import models.modules.flow as flow
|
||
|
from utils.util import opt_get
|
||
|
|
||
|
|
||
|
class SRFlowNet(nn.Module):
|
||
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=4, K=None, opt=None, step=None):
|
||
|
super(SRFlowNet, self).__init__()
|
||
|
|
||
|
self.opt = opt
|
||
|
self.quant = 255 if opt_get(opt, ['datasets', 'train', 'quant']) is \
|
||
|
None else opt_get(opt, ['datasets', 'train', 'quant'])
|
||
|
self.RRDB = RRDBNet(in_nc, out_nc, nf, nb, gc, scale, opt)
|
||
|
hidden_channels = opt_get(opt, ['network_G', 'flow', 'hidden_channels'])
|
||
|
hidden_channels = hidden_channels or 64
|
||
|
self.RRDB_training = True # Default is true
|
||
|
|
||
|
train_RRDB_delay = opt_get(self.opt, ['network_G', 'train_RRDB_delay'])
|
||
|
set_RRDB_to_train = False
|
||
|
if set_RRDB_to_train:
|
||
|
self.set_rrdb_training(True)
|
||
|
|
||
|
self.flowUpsamplerNet = \
|
||
|
FlowUpsamplerNet((160, 160, 3), hidden_channels, K,
|
||
|
flow_coupling=opt['network_G']['flow']['coupling'], opt=opt)
|
||
|
self.i = 0
|
||
|
|
||
|
def set_rrdb_training(self, trainable):
|
||
|
if self.RRDB_training != trainable:
|
||
|
for p in self.RRDB.parameters():
|
||
|
p.requires_grad = trainable
|
||
|
self.RRDB_training = trainable
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
def forward(self, gt=None, lr=None, z=None, eps_std=None, reverse=False, epses=None, reverse_with_grad=False,
|
||
|
lr_enc=None,
|
||
|
add_gt_noise=False, step=None, y_label=None):
|
||
|
if not reverse:
|
||
|
return self.normal_flow(gt, lr, epses=epses, lr_enc=lr_enc, add_gt_noise=add_gt_noise, step=step,
|
||
|
y_onehot=y_label)
|
||
|
else:
|
||
|
# assert lr.shape[0] == 1
|
||
|
assert lr.shape[1] == 3
|
||
|
# assert lr.shape[2] == 20
|
||
|
# assert lr.shape[3] == 20
|
||
|
# assert z.shape[0] == 1
|
||
|
# assert z.shape[1] == 3 * 8 * 8
|
||
|
# assert z.shape[2] == 20
|
||
|
# assert z.shape[3] == 20
|
||
|
if reverse_with_grad:
|
||
|
return self.reverse_flow(lr, z, y_onehot=y_label, eps_std=eps_std, epses=epses, lr_enc=lr_enc,
|
||
|
add_gt_noise=add_gt_noise)
|
||
|
else:
|
||
|
with torch.no_grad():
|
||
|
return self.reverse_flow(lr, z, y_onehot=y_label, eps_std=eps_std, epses=epses, lr_enc=lr_enc,
|
||
|
add_gt_noise=add_gt_noise)
|
||
|
|
||
|
def normal_flow(self, gt, lr, y_onehot=None, epses=None, lr_enc=None, add_gt_noise=True, step=None):
|
||
|
if lr_enc is None:
|
||
|
lr_enc = self.rrdbPreprocessing(lr)
|
||
|
|
||
|
logdet = torch.zeros_like(gt[:, 0, 0, 0])
|
||
|
pixels = thops.pixels(gt)
|
||
|
|
||
|
z = gt
|
||
|
|
||
|
if add_gt_noise:
|
||
|
# Setup
|
||
|
noiseQuant = opt_get(self.opt, ['network_G', 'flow', 'augmentation', 'noiseQuant'], True)
|
||
|
if noiseQuant:
|
||
|
z = z + ((torch.rand(z.shape, device=z.device) - 0.5) / self.quant)
|
||
|
logdet = logdet + float(-np.log(self.quant) * pixels)
|
||
|
|
||
|
# Encode
|
||
|
epses, logdet = self.flowUpsamplerNet(rrdbResults=lr_enc, gt=z, logdet=logdet, reverse=False, epses=epses,
|
||
|
y_onehot=y_onehot)
|
||
|
|
||
|
objective = logdet.clone()
|
||
|
|
||
|
if isinstance(epses, (list, tuple)):
|
||
|
z = epses[-1]
|
||
|
else:
|
||
|
z = epses
|
||
|
|
||
|
objective = objective + flow.GaussianDiag.logp(None, None, z)
|
||
|
|
||
|
nll = (-objective) / float(np.log(2.) * pixels)
|
||
|
|
||
|
if isinstance(epses, list):
|
||
|
return epses, nll, logdet
|
||
|
return z, nll, logdet
|
||
|
|
||
|
def rrdbPreprocessing(self, lr):
|
||
|
rrdbResults = self.RRDB(lr, get_steps=True)
|
||
|
block_idxs = opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'blocks']) or []
|
||
|
if len(block_idxs) > 0:
|
||
|
concat = torch.cat([rrdbResults["block_{}".format(idx)] for idx in block_idxs], dim=1)
|
||
|
|
||
|
if opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'concat']) or False:
|
||
|
keys = ['last_lr_fea', 'fea_up1', 'fea_up2', 'fea_up4']
|
||
|
if 'fea_up0' in rrdbResults.keys():
|
||
|
keys.append('fea_up0')
|
||
|
if 'fea_up-1' in rrdbResults.keys():
|
||
|
keys.append('fea_up-1')
|
||
|
if self.opt['scale'] >= 8:
|
||
|
keys.append('fea_up8')
|
||
|
if self.opt['scale'] == 16:
|
||
|
keys.append('fea_up16')
|
||
|
for k in keys:
|
||
|
h = rrdbResults[k].shape[2]
|
||
|
w = rrdbResults[k].shape[3]
|
||
|
rrdbResults[k] = torch.cat([rrdbResults[k], F.interpolate(concat, (h, w))], dim=1)
|
||
|
return rrdbResults
|
||
|
|
||
|
def get_score(self, disc_loss_sigma, z):
|
||
|
score_real = 0.5 * (1 - 1 / (disc_loss_sigma ** 2)) * thops.sum(z ** 2, dim=[1, 2, 3]) - \
|
||
|
z.shape[1] * z.shape[2] * z.shape[3] * math.log(disc_loss_sigma)
|
||
|
return -score_real
|
||
|
|
||
|
def reverse_flow(self, lr, z, y_onehot, eps_std, epses=None, lr_enc=None, add_gt_noise=True):
|
||
|
logdet = torch.zeros_like(lr[:, 0, 0, 0])
|
||
|
pixels = thops.pixels(lr) * self.opt['scale'] ** 2
|
||
|
|
||
|
if add_gt_noise:
|
||
|
logdet = logdet - float(-np.log(self.quant) * pixels)
|
||
|
|
||
|
if lr_enc is None:
|
||
|
lr_enc = self.rrdbPreprocessing(lr)
|
||
|
|
||
|
x, logdet = self.flowUpsamplerNet(rrdbResults=lr_enc, z=z, eps_std=eps_std, reverse=True, epses=epses,
|
||
|
logdet=logdet)
|
||
|
|
||
|
return x, logdet
|