forked from mrq/DL-Art-School
binaries
This commit is contained in:
parent
4427d7fb84
commit
01c0941a40
54
bitsandbytes_windows/cextension.py
Normal file
54
bitsandbytes_windows/cextension.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
import ctypes as ct
|
||||
from pathlib import Path
|
||||
from warnings import warn
|
||||
|
||||
from .cuda_setup.main import evaluate_cuda_setup
|
||||
|
||||
|
||||
class CUDALibrary_Singleton(object):
|
||||
_instance = None
|
||||
|
||||
def __init__(self):
|
||||
raise RuntimeError("Call get_instance() instead")
|
||||
|
||||
def initialize(self):
|
||||
binary_name = evaluate_cuda_setup()
|
||||
package_dir = Path(__file__).parent
|
||||
binary_path = package_dir / binary_name
|
||||
|
||||
if not binary_path.exists():
|
||||
print(f"CUDA SETUP: TODO: compile library for specific version: {binary_name}")
|
||||
legacy_binary_name = "libbitsandbytes.so"
|
||||
print(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
|
||||
binary_path = package_dir / legacy_binary_name
|
||||
if not binary_path.exists():
|
||||
print('CUDA SETUP: CUDA detection failed. Either CUDA driver not installed, CUDA not installed, or you have multiple conflicting CUDA libraries!')
|
||||
print('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
|
||||
raise Exception('CUDA SETUP: Setup Failed!')
|
||||
# self.lib = ct.cdll.LoadLibrary(binary_path)
|
||||
self.lib = ct.cdll.LoadLibrary(str(binary_path)) # $$$
|
||||
else:
|
||||
print(f"CUDA SETUP: Loading binary {binary_path}...")
|
||||
# self.lib = ct.cdll.LoadLibrary(binary_path)
|
||||
self.lib = ct.cdll.LoadLibrary(str(binary_path)) # $$$
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = cls.__new__(cls)
|
||||
cls._instance.initialize()
|
||||
return cls._instance
|
||||
|
||||
|
||||
lib = CUDALibrary_Singleton.get_instance().lib
|
||||
try:
|
||||
lib.cadam32bit_g32
|
||||
lib.get_context.restype = ct.c_void_p
|
||||
lib.get_cusparse.restype = ct.c_void_p
|
||||
COMPILED_WITH_CUDA = True
|
||||
except AttributeError:
|
||||
warn(
|
||||
"The installed version of bitsandbytes was compiled without GPU support. "
|
||||
"8-bit optimizers and GPU quantization are unavailable."
|
||||
)
|
||||
COMPILED_WITH_CUDA = False
|
166
bitsandbytes_windows/cuda_setup/main.py
Normal file
166
bitsandbytes_windows/cuda_setup/main.py
Normal file
|
@ -0,0 +1,166 @@
|
|||
"""
|
||||
extract factors the build is dependent on:
|
||||
[X] compute capability
|
||||
[ ] TODO: Q - What if we have multiple GPUs of different makes?
|
||||
- CUDA version
|
||||
- Software:
|
||||
- CPU-only: only CPU quantization functions (no optimizer, no matrix multiple)
|
||||
- CuBLAS-LT: full-build 8-bit optimizer
|
||||
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
||||
|
||||
evaluation:
|
||||
- if paths faulty, return meaningful error
|
||||
- else:
|
||||
- determine CUDA version
|
||||
- determine capabilities
|
||||
- based on that set the default path
|
||||
"""
|
||||
|
||||
import ctypes
|
||||
|
||||
from .paths import determine_cuda_runtime_lib_path
|
||||
|
||||
|
||||
def check_cuda_result(cuda, result_val):
|
||||
# 3. Check for CUDA errors
|
||||
if result_val != 0:
|
||||
error_str = ctypes.c_char_p()
|
||||
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
|
||||
print(f"CUDA exception! Error code: {error_str.value.decode()}")
|
||||
|
||||
def get_cuda_version(cuda, cudart_path):
|
||||
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
|
||||
try:
|
||||
cudart = ctypes.CDLL(cudart_path)
|
||||
except OSError:
|
||||
# TODO: shouldn't we error or at least warn here?
|
||||
print(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
|
||||
return None
|
||||
|
||||
version = ctypes.c_int()
|
||||
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
|
||||
version = int(version.value)
|
||||
major = version//1000
|
||||
minor = (version-(major*1000))//10
|
||||
|
||||
if major < 11:
|
||||
print('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
||||
|
||||
return f'{major}{minor}'
|
||||
|
||||
|
||||
def get_cuda_lib_handle():
|
||||
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||
try:
|
||||
cuda = ctypes.CDLL("libcuda.so")
|
||||
except OSError:
|
||||
# TODO: shouldn't we error or at least warn here?
|
||||
print('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
||||
return None
|
||||
check_cuda_result(cuda, cuda.cuInit(0))
|
||||
|
||||
return cuda
|
||||
|
||||
|
||||
def get_compute_capabilities(cuda):
|
||||
"""
|
||||
1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||
init_device -> init variables -> call function by reference
|
||||
2. call extern C function to determine CC
|
||||
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
||||
3. Check for CUDA errors
|
||||
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
||||
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
||||
"""
|
||||
|
||||
|
||||
nGpus = ctypes.c_int()
|
||||
cc_major = ctypes.c_int()
|
||||
cc_minor = ctypes.c_int()
|
||||
|
||||
device = ctypes.c_int()
|
||||
|
||||
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
|
||||
ccs = []
|
||||
for i in range(nGpus.value):
|
||||
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
|
||||
ref_major = ctypes.byref(cc_major)
|
||||
ref_minor = ctypes.byref(cc_minor)
|
||||
# 2. call extern C function to determine CC
|
||||
check_cuda_result(
|
||||
cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device)
|
||||
)
|
||||
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
||||
|
||||
return ccs
|
||||
|
||||
|
||||
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
|
||||
def get_compute_capability(cuda):
|
||||
"""
|
||||
Extracts the highest compute capbility from all available GPUs, as compute
|
||||
capabilities are downwards compatible. If no GPUs are detected, it returns
|
||||
None.
|
||||
"""
|
||||
ccs = get_compute_capabilities(cuda)
|
||||
if ccs is not None:
|
||||
# TODO: handle different compute capabilities; for now, take the max
|
||||
return ccs[-1]
|
||||
return None
|
||||
|
||||
|
||||
def evaluate_cuda_setup():
|
||||
print('')
|
||||
print('='*35 + 'BUG REPORT' + '='*35)
|
||||
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
|
||||
print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
|
||||
print('='*80)
|
||||
return "libbitsandbytes_cuda116.dll" # $$$
|
||||
|
||||
binary_name = "libbitsandbytes_cpu.so"
|
||||
#if not torch.cuda.is_available():
|
||||
#print('No GPU detected. Loading CPU library...')
|
||||
#return binary_name
|
||||
|
||||
cudart_path = determine_cuda_runtime_lib_path()
|
||||
if cudart_path is None:
|
||||
print(
|
||||
"WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!"
|
||||
)
|
||||
return binary_name
|
||||
|
||||
print(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
|
||||
cuda = get_cuda_lib_handle()
|
||||
cc = get_compute_capability(cuda)
|
||||
print(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
|
||||
cuda_version_string = get_cuda_version(cuda, cudart_path)
|
||||
|
||||
|
||||
if cc == '':
|
||||
print(
|
||||
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
|
||||
)
|
||||
return binary_name
|
||||
|
||||
# 7.5 is the minimum CC vor cublaslt
|
||||
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
|
||||
|
||||
# TODO:
|
||||
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
||||
# (2) Multiple CUDA versions installed
|
||||
|
||||
# we use ls -l instead of nvcc to determine the cuda version
|
||||
# since most installations will have the libcudart.so installed, but not the compiler
|
||||
print(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
|
||||
|
||||
def get_binary_name():
|
||||
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
|
||||
bin_base_name = "libbitsandbytes_cuda"
|
||||
if has_cublaslt:
|
||||
return f"{bin_base_name}{cuda_version_string}.so"
|
||||
else:
|
||||
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so"
|
||||
|
||||
binary_name = get_binary_name()
|
||||
|
||||
return binary_name
|
BIN
bitsandbytes_windows/libbitsandbytes_cpu.dll
Normal file
BIN
bitsandbytes_windows/libbitsandbytes_cpu.dll
Normal file
Binary file not shown.
BIN
bitsandbytes_windows/libbitsandbytes_cuda116.dll
Normal file
BIN
bitsandbytes_windows/libbitsandbytes_cuda116.dll
Normal file
Binary file not shown.
6
bitsandbytes_windows/nn/__init__.py
Normal file
6
bitsandbytes_windows/nn/__init__.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
from .modules import Int8Params, Linear8bit, Linear8bitLt
|
||||
from .modules import Embedding as StableEmbedding
|
|
@ -45,4 +45,7 @@ rotary-embedding-torch
|
|||
axial_positional_embedding
|
||||
g-mlp-pytorch
|
||||
x-clip
|
||||
x_transformers==1.0.4
|
||||
x_transformers==1.0.4
|
||||
|
||||
# bitsandbytes
|
||||
bitsandbytes==0.35.0
|
||||
|
|
Loading…
Reference in New Issue
Block a user