Commit my attempt at "conforming" the lucidrains stylegan implementation to the reference spec. Not working. will probably be abandoned.

This commit is contained in:
James Betker 2020-12-18 09:51:48 -07:00
parent 209332292a
commit 1708136b55
2 changed files with 1133 additions and 0 deletions

View File

@ -0,0 +1,847 @@
import math
import multiprocessing
from contextlib import contextmanager, ExitStack
from functools import partial
from math import log2
from random import random
import torch
import torch.nn.functional as F
import trainer.losses as L
import numpy as np
from kornia.filters import filter2D
from linear_attention_transformer import ImageLinearAttention
from torch import nn
from torch.autograd import grad as torch_grad
from vector_quantize_pytorch import VectorQuantize
from utils.util import checkpoint
try:
from apex import amp
APEX_AVAILABLE = True
except:
APEX_AVAILABLE = False
assert torch.cuda.is_available(), 'You need to have an Nvidia GPU with CUDA installed.'
num_cores = multiprocessing.cpu_count()
# constants
EPS = 1e-8
CALC_FID_NUM_IMAGES = 12800
# helper classes
def DiffAugment(x, types=[]):
for p in types:
for f in AUGMENT_FNS[p]:
x = f(x)
return x.contiguous()
def rand_brightness(x):
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
return x
def rand_saturation(x):
x_mean = x.mean(dim=1, keepdim=True)
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
return x
def rand_contrast(x):
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
return x
def rand_translation(x, ratio=0.125):
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(x.size(2), dtype=torch.long, device=x.device),
torch.arange(x.size(3), dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
return x
def rand_cutout(x, ratio=0.5):
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
mask[grid_batch, grid_x, grid_y] = 0
x = x * mask.unsqueeze(1)
return x
AUGMENT_FNS = {
'color': [rand_brightness, rand_saturation, rand_contrast],
'translation': [rand_translation],
'cutout': [rand_cutout],
}
class NanException(Exception):
pass
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if not exists(old):
return new
return old * self.beta + (1 - self.beta) * new
class Flatten(nn.Module):
def forward(self, x):
return x.reshape(x.shape[0], -1)
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
return self.fn(x) + x
class Rezero(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
self.g = nn.Parameter(torch.zeros(1))
def forward(self, x):
return self.fn(x) * self.g
class PermuteToFrom(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
x = x.permute(0, 2, 3, 1)
out, loss = self.fn(x)
out = out.permute(0, 3, 1, 2)
return out, loss
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer('f', f)
def forward(self, x):
f = self.f
f = f[None, None, :] * f[None, :, None]
return filter2D(x, f, normalized=True)
# one layer of self-attention and feedforward, for images
attn_and_ff = lambda chan: nn.Sequential(*[
Residual(Rezero(ImageLinearAttention(chan, norm_queries=True))),
Residual(Rezero(nn.Sequential(nn.Conv2d(chan, chan * 2, 1), leaky_relu(), nn.Conv2d(chan * 2, chan, 1))))
])
# helpers
def exists(val):
return val is not None
@contextmanager
def null_context():
yield
def combine_contexts(contexts):
@contextmanager
def multi_contexts():
with ExitStack() as stack:
yield [stack.enter_context(ctx()) for ctx in contexts]
return multi_contexts
def default(value, d):
return value if exists(value) else d
def cycle(iterable):
while True:
for i in iterable:
yield i
def cast_list(el):
return el if isinstance(el, list) else [el]
def is_empty(t):
if isinstance(t, torch.Tensor):
return t.nelement() == 0
return not exists(t)
def raise_if_nan(t):
if torch.isnan(t):
raise NanException
def gradient_accumulate_contexts(gradient_accumulate_every, is_ddp, ddps):
if is_ddp:
num_no_syncs = gradient_accumulate_every - 1
head = [combine_contexts(map(lambda ddp: ddp.no_sync, ddps))] * num_no_syncs
tail = [null_context]
contexts = head + tail
else:
contexts = [null_context] * gradient_accumulate_every
for context in contexts:
with context():
yield
def loss_backwards(fp16, loss, optimizer, loss_id, **kwargs):
if fp16:
with amp.scale_loss(loss, optimizer, loss_id) as scaled_loss:
scaled_loss.backward(**kwargs)
else:
loss.backward(**kwargs)
def gradient_penalty(images, output, weight=10):
batch_size = images.shape[0]
gradients = torch_grad(outputs=output, inputs=images,
grad_outputs=torch.ones(output.size(), device=images.device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.reshape(batch_size, -1)
return weight * ((gradients.norm(2, dim=1) - 1) ** 2).mean()
def calc_pl_lengths(styles, images):
device = images.device
num_pixels = images.shape[2] * images.shape[3]
pl_noise = torch.randn(images.shape, device=device) / math.sqrt(num_pixels)
outputs = (images * pl_noise).sum()
pl_grads = torch_grad(outputs=outputs, inputs=styles,
grad_outputs=torch.ones(outputs.shape, device=device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
return (pl_grads ** 2).sum(dim=2).mean(dim=1).sqrt()
def image_noise(n, im_size, device):
return torch.FloatTensor(n, im_size, im_size, 1).uniform_(0., 1.).cuda(device)
class BiasedLeakyReLU(nn.Module):
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
if bias:
self.bias = nn.Parameter(torch.zeros(channel))
else:
self.bias = None
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return biased_leaky_relu(input, self.bias, self.negative_slope, self.scale)
def biased_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
if bias is not None:
rest_dim = [1] * (input.ndim - bias.ndim - 1)
return (
F.leaky_relu(
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope
)
* scale
)
else:
return F.leaky_relu(input, negative_slope=0.2) * scale
def evaluate_in_chunks(max_batch_size, model, *args):
split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args))))
chunked_outputs = [model(*i) for i in split_args]
if len(chunked_outputs) == 1:
return chunked_outputs[0]
return torch.cat(chunked_outputs, dim=0)
def set_requires_grad(model, bool):
for p in model.parameters():
p.requires_grad = bool
def slerp(val, low, high):
low_norm = low / torch.norm(low, dim=1, keepdim=True)
high_norm = high / torch.norm(high, dim=1, keepdim=True)
omega = torch.acos((low_norm * high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
return res
# augmentations
def random_hflip(tensor, prob):
if prob > random():
return tensor
return torch.flip(tensor, dims=(3,))
class StyleGan2Augmentor(nn.Module):
def __init__(self, D, image_size, types, prob):
super().__init__()
self.D = D
self.prob = prob
self.types = types
def forward(self, images, detach=False):
if random() < self.prob:
images = random_hflip(images, prob=0.5)
images = DiffAugment(images, types=self.types)
if detach:
images = images.detach()
# Save away for use elsewhere (e.g. unet loss)
self.aug_images = images
return self.D(images)
# stylegan2 classes
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, lr_mul=1, bias=True, activation=False):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim))
self.lr_mul = lr_mul
self.activation = activation
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.lr_mul)
out = biased_leaky_relu(out, self.bias * self.lr_mul)
return out
class StyleVectorizer(nn.Module):
def __init__(self, emb, depth, lr_mul=0.01):
super().__init__()
layers = []
for i in range(depth):
layers.extend([EqualLinear(emb, emb, lr_mul, activation=True)])
self.net = nn.Sequential(*layers)
def forward(self, x):
x = F.normalize(x, dim=1)
return self.net(x)
class RGBBlock(nn.Module):
def __init__(self, latent_dim, input_channel, upsample, rgba=False):
super().__init__()
self.input_channel = input_channel
self.to_style = nn.Linear(latent_dim, input_channel)
out_filters = 3 if not rgba else 4
self.conv = Conv2DMod(input_channel, out_filters, 1, demod=False)
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
Blur()
) if upsample else None
def forward(self, x, prev_rgb, istyle):
b, c, h, w = x.shape
style = self.to_style(istyle)
x = self.conv(x, style)
if exists(prev_rgb):
x = x + prev_rgb
if exists(self.upsample):
x = self.upsample(x)
return x
class AdaptiveInstanceNorm(nn.Module):
def __init__(self, in_channel, style_dim):
super().__init__()
from models.arch_util import ConvGnLelu
self.style2scale = ConvGnLelu(style_dim, in_channel, kernel_size=1, norm=False, activation=False, bias=True)
self.style2bias = ConvGnLelu(style_dim, in_channel, kernel_size=1, norm=False, activation=False, bias=True, weight_init_factor=0)
self.norm = nn.InstanceNorm2d(in_channel)
def forward(self, input, style):
gamma = self.style2scale(style)
beta = self.style2bias(style)
out = self.norm(input)
out = gamma * out + beta
return out
class NoiseInjection(nn.Module):
def __init__(self, channel):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
def forward(self, image, noise):
return image + self.weight * noise
class EqualLR:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
fan_in = weight.data.size(1) * weight.data[0][0].numel()
return weight * math.sqrt(2 / fan_in)
@staticmethod
def apply(module, name):
fn = EqualLR(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight = self.compute_weight(module)
setattr(module, self.name, weight)
def equal_lr(module, name='weight'):
EqualLR.apply(module, name)
return module
class EqualConv2d(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
conv = nn.Conv2d(*args, **kwargs)
conv.weight.data.normal_()
conv.bias.data.zero_()
self.conv = equal_lr(conv)
def forward(self, input):
return self.conv(input)
class Conv2DMod(nn.Module):
def __init__(self, in_chan, out_chan, kernel, demod=True, stride=1, dilation=1, **kwargs):
super().__init__()
self.filters = out_chan
self.demod = demod
self.kernel = kernel
self.stride = stride
self.dilation = dilation
self.weight = nn.Parameter(torch.randn((out_chan, in_chan, kernel, kernel)))
nn.init.kaiming_normal_(self.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
def _get_same_padding(self, size, kernel, dilation, stride):
return ((size - 1) * (stride - 1) + dilation * (kernel - 1)) // 2
def forward(self, x, y):
b, c, h, w = x.shape
w1 = y[:, None, :, None, None]
w2 = self.weight[None, :, :, :, :]
weights = w2 * (w1 + 1)
if self.demod:
d = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4), keepdim=True) + EPS)
weights = weights * d
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.filters, *ws)
padding = self._get_same_padding(h, self.kernel, self.dilation, self.stride)
x = F.conv2d(x, weights, padding=padding, groups=b)
x = x.reshape(-1, self.filters, h, w)
return x
class GeneratorBlock(nn.Module):
def __init__(self, latent_dim, input_channels, filters, upsample=True, upsample_rgb=True, rgba=False, initial_block=False):
super().__init__()
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) if upsample else None
self.to_style1 = nn.Linear(latent_dim, input_channels)
self.noise1_scale = nn.Parameter(torch.full((1,), fill_value=1e-5))
self.conv1 = Conv2DMod(input_channels, filters, 3)
self.activation1 = BiasedLeakyReLU(filters)
self.initial_block = initial_block
if not initial_block:
self.to_style2 = nn.Linear(latent_dim, filters)
self.noise2_scale = nn.Parameter(torch.full((1,), fill_value=1e-5))
self.conv2 = Conv2DMod(filters, filters, 3)
self.activation2 = BiasedLeakyReLU(filters)
self.to_rgb = RGBBlock(latent_dim, filters, upsample_rgb, rgba)
def forward(self, x, prev_rgb, istyle, inoise1=None, inoise2=None):
if exists(self.upsample):
x = self.upsample(x)
if inoise1 is None:
b, c, h, w = x.shape
inoise1 = torch.randn((b,1,h,w), device=x.device)
inoise2 = torch.randn((b,1,h,w), device=x.device) # Assume that both are None if one is None.
noise1 = inoise1 * self.noise1_scale
style1 = self.to_style1(istyle)
x = self.conv1(x, style1)
x = self.activation1(x + noise1)
if not self.initial_block:
noise2 = inoise2 * self.noise2_scale
style2 = self.to_style2(istyle)
x = self.conv2(x, style2)
x = self.activation2(x + noise2)
rgb = self.to_rgb(x, prev_rgb, istyle)
return x, rgb
class Generator(nn.Module):
def __init__(self, image_size, latent_dim, network_capacity=16, transparent=False, attn_layers=[], no_const=False,
fmap_max=512):
super().__init__()
self.image_size = image_size
self.latent_dim = latent_dim
self.num_layers = int(log2(image_size) - 1)
filters = [network_capacity * (2 ** (i + 1)) for i in range(self.num_layers)][::-1]
set_fmap_max = partial(min, fmap_max)
filters = list(map(set_fmap_max, filters))
init_channels = filters[0]
filters = [init_channels, *filters]
in_out_pairs = zip(filters[:-1], filters[1:])
self.no_const = no_const
if no_const:
self.to_initial_block = nn.ConvTranspose2d(latent_dim, init_channels, 4, 1, 0, bias=False)
else:
self.initial_block = nn.Parameter(torch.randn((1, init_channels, 4, 4)))
self.blocks = nn.ModuleList([])
self.attns = nn.ModuleList([])
for ind, (in_chan, out_chan) in enumerate(in_out_pairs):
not_first = ind != 0
not_last = ind != (self.num_layers - 1)
num_layer = self.num_layers - ind
attn_fn = attn_and_ff(in_chan) if num_layer in attn_layers else None
self.attns.append(attn_fn)
block_fn = GeneratorBlock
block = block_fn(
latent_dim,
in_chan,
out_chan,
upsample=not_first,
upsample_rgb=not_last,
rgba=transparent,
initial_block=(ind == 0)
)
self.blocks.append(block)
def forward(self, styles, input_noises):
batch_size = styles.shape[0]
if self.no_const:
avg_style = styles.mean(dim=1)[:, :, None, None]
x = self.to_initial_block(avg_style)
else:
x = self.initial_block.expand(batch_size, -1, -1, -1)
rgb = None
styles = styles.transpose(0, 1)
n = 0
for style, block, attn in zip(styles, self.blocks, self.attns):
if exists(attn):
x = checkpoint(attn, x)
x, rgb = checkpoint(block, x, rgb, style, input_noises[n], input_noises[n+1])
n = 1 if n == 0 else n + 2 # The first block only consumes 1 noise, the rest consume 2.
return rgb
# Wrapper that combines style vectorizer with the actual generator.
class StyleGan2GeneratorWithLatent(nn.Module):
def __init__(self, image_size, latent_dim=512, style_depth=8, lr_mlp=.1, network_capacity=16, transparent=False,
attn_layers=[], no_const=False, fmap_max=512):
super().__init__()
self.vectorizer = StyleVectorizer(latent_dim, style_depth, lr_mul=lr_mlp)
self.gen = Generator(image_size, latent_dim, network_capacity, transparent, attn_layers, no_const, fmap_max)
self.mixed_prob = .9
self._init_weights()
def noise(self, n, latent_dim, device):
return torch.randn(n, latent_dim).cuda(device)
def noise_list(self, n, layers, latent_dim, device):
return [(self.noise(n, latent_dim, device), layers)]
def mixed_list(self, n, layers, latent_dim, device):
tt = int(torch.rand(()).numpy() * layers)
return self.noise_list(n, tt, latent_dim, device) + self.noise_list(n, layers - tt, latent_dim, device)
def latent_to_w(self, style_vectorizer, latent_descr):
return [(style_vectorizer(z), num_layers) for z, num_layers in latent_descr]
def styles_def_to_tensor(self, styles_def):
return torch.cat([t[:, None, :].expand(-1, n, -1) for t, n in styles_def], dim=1)
# If provided, 'noise' should be a list of tensors that is fed into each input block.
# b=batch_size.
def forward(self, b, noises=None):
if noises is None:
noises = [None] * (len(self.gen.blocks) * 2 - 1)
full_random_latents = True
if full_random_latents:
style = self.noise(b*2, self.gen.latent_dim, next(self.parameters()).device)
w = self.vectorizer(style)
# Randomly distribute styles across layers
w_styles = w[:,None,:].expand(-1, self.gen.num_layers, -1).clone()
for j in range(b):
cutoff = int(torch.rand(()).numpy() * self.gen.num_layers)
if cutoff == self.gen.num_layers or random() > self.mixed_prob:
w_styles[j] = w_styles[j*2]
else:
w_styles[j, :cutoff] = w_styles[j*2, :cutoff]
w_styles[j, cutoff:] = w_styles[j*2+1, cutoff:]
w_styles = w_styles[:b]
else:
get_latents_fn = self.mixed_list if random() < self.mixed_prob else self.noise_list
style = get_latents_fn(b, self.gen.num_layers, self.gen.latent_dim, device=x.device)
w_space = self.latent_to_w(self.vectorizer, style)
w_styles = self.styles_def_to_tensor(w_space)
return self.gen(w_styles, noises), w_styles
def _init_weights(self):
for m in self.modules():
if type(m) in {nn.Conv2d, nn.Linear} and hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
class DiscriminatorBlock(nn.Module):
def __init__(self, input_channels, filters, downsample=True):
super().__init__()
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride=(2 if downsample else 1))
self.net = nn.Sequential(
nn.Conv2d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv2d(filters, filters, 3, padding=1),
leaky_relu()
)
self.downsample = nn.Sequential(
Blur(),
nn.Conv2d(filters, filters, 3, padding=1, stride=2)
) if downsample else None
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
x = self.downsample(x)
x = (x + res) * (1 / math.sqrt(2))
return x
class StyleGan2Discriminator(nn.Module):
def __init__(self, image_size, network_capacity=16, fq_layers=[], fq_dict_size=256, attn_layers=[],
transparent=False, fmap_max=512, input_filters=3):
super().__init__()
num_layers = int(log2(image_size) - 1)
blocks = []
filters = [input_filters] + [(64) * (2 ** i) for i in range(num_layers + 1)]
set_fmap_max = partial(min, fmap_max)
filters = list(map(set_fmap_max, filters))
chan_in_out = list(zip(filters[:-1], filters[1:]))
blocks = []
attn_blocks = []
quantize_blocks = []
for ind, (in_chan, out_chan) in enumerate(chan_in_out):
num_layer = ind + 1
is_not_last = ind != (len(chan_in_out) - 1)
block = DiscriminatorBlock(in_chan, out_chan, downsample=is_not_last)
blocks.append(block)
attn_fn = attn_and_ff(out_chan) if num_layer in attn_layers else None
attn_blocks.append(attn_fn)
quantize_fn = PermuteToFrom(VectorQuantize(out_chan, fq_dict_size)) if num_layer in fq_layers else None
quantize_blocks.append(quantize_fn)
self.blocks = nn.ModuleList(blocks)
self.attn_blocks = nn.ModuleList(attn_blocks)
self.quantize_blocks = nn.ModuleList(quantize_blocks)
chan_last = filters[-1]
latent_dim = 2 * 2 * chan_last
self.final_conv = nn.Conv2d(chan_last, chan_last, 3, padding=1)
self.flatten = Flatten()
self.to_logit = nn.Linear(latent_dim, 1)
self._init_weights()
def forward(self, x):
b, *_ = x.shape
quantize_loss = torch.zeros(1).to(x)
for (block, attn_block, q_block) in zip(self.blocks, self.attn_blocks, self.quantize_blocks):
x = block(x)
if exists(attn_block):
x = attn_block(x)
if exists(q_block):
x, _, loss = q_block(x)
quantize_loss += loss
x = self.final_conv(x)
x = self.flatten(x)
x = self.to_logit(x)
if exists(q_block):
return x.squeeze(), quantize_loss
else:
return x.squeeze()
def _init_weights(self):
for m in self.modules():
if type(m) in {nn.Conv2d, nn.Linear}:
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
class StyleGan2DivergenceLoss(L.ConfigurableLoss):
def __init__(self, opt, env):
super().__init__(opt, env)
self.real = opt['real']
self.fake = opt['fake']
self.discriminator = opt['discriminator']
self.for_gen = opt['gen_loss']
self.gp_frequency = opt['gradient_penalty_frequency']
self.noise = opt['noise'] if 'noise' in opt.keys() else 0
def forward(self, net, state):
real_input = state[self.real]
fake_input = state[self.fake]
if self.noise != 0:
fake_input = fake_input + torch.rand_like(fake_input) * self.noise
real_input = real_input + torch.rand_like(real_input) * self.noise
D = self.env['discriminators'][self.discriminator]
fake = D(fake_input)
if self.for_gen:
return fake.mean()
else:
real_input.requires_grad_() # <-- Needed to compute gradients on the input.
real = D(real_input)
divergence_loss = (F.relu(1 + real) + F.relu(1 - fake)).mean()
# Apply gradient penalty. TODO: migrate this elsewhere.
if self.env['step'] % self.gp_frequency == 0:
from models.stylegan.stylegan2_lucidrains import gradient_penalty
gp = gradient_penalty(real_input, real)
self.metrics.append(("gradient_penalty", gp.clone().detach()))
divergence_loss = divergence_loss + gp
real_input.requires_grad_(requires_grad=False)
return divergence_loss
class StyleGan2PathLengthLoss(L.ConfigurableLoss):
def __init__(self, opt, env):
super().__init__(opt, env)
self.w_styles = opt['w_styles']
self.gen = opt['gen']
self.pl_mean = None
from models.stylegan.stylegan2_lucidrains import EMA
self.pl_length_ma = EMA(.99)
def forward(self, net, state):
w_styles = state[self.w_styles]
gen = state[self.gen]
from models.stylegan.stylegan2_lucidrains import calc_pl_lengths
pl_lengths = calc_pl_lengths(w_styles, gen)
avg_pl_length = np.mean(pl_lengths.detach().cpu().numpy())
from models.stylegan.stylegan2_lucidrains import is_empty
if not is_empty(self.pl_mean):
pl_loss = ((pl_lengths - self.pl_mean) ** 2).mean()
if not torch.isnan(pl_loss):
return pl_loss
else:
print("Path length loss returned NaN!")
self.pl_mean = self.pl_length_ma.update_average(self.pl_mean, avg_pl_length)
return 0

View File

@ -0,0 +1,286 @@
# Converts from Tensorflow Stylegan2 weights to weights used by this model.
# Original source: https://raw.githubusercontent.com/rosinality/stylegan2-pytorch/master/convert_weight.py
# Adapted to lucidrains' Stylegan implementation.
#
# Also doesn't require you to install Tensorflow 1.15 or clone the nVidia repo.
import argparse
import os
import sys
import pickle
import math
import torch
import numpy as np
from torchvision import utils
# Converts from the TF state_dict input provided into the vars originally expected from the rosinality converter.
from models.stylegan.stylegan2_lucidrains import StyleGan2GeneratorWithLatent
def get_vars(vars, source_name):
net_name = source_name.split('/')[0]
vars_as_tuple_list = vars[net_name]['variables']
result_vars = {}
for t in vars_as_tuple_list:
result_vars[t[0]] = t[1]
return result_vars, source_name.replace(net_name + "/", "")
def get_vars_direct(vars, source_name):
v, n = get_vars(vars, source_name)
return v[n]
def convert_modconv(vars, source_name, target_name, flip=False, numeral=1):
vars, source_name = get_vars(vars, source_name)
weight = vars[source_name + "/weight"]
mod_weight = vars[source_name + "/mod_weight"]
mod_bias = vars[source_name + "/mod_bias"]
noise = vars[source_name + "/noise_strength"]
bias = vars[source_name + "/bias"]
dic = {
f"conv{numeral}.weight": weight.transpose((3, 2, 0, 1)),
f"to_style{numeral}.weight": mod_weight.transpose((1, 0)),
f"to_style{numeral}.bias": mod_bias + 1,
f"noise{numeral}_scale": np.array([noise]),
f"activation{numeral}.bias": bias,
}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + "." + k] = torch.from_numpy(v)
if flip:
dic_torch[target_name + f".conv{numeral}.weight"] = torch.flip(
dic_torch[target_name + f".conv{numeral}.weight"], [2, 3]
)
return dic_torch
def convert_conv(vars, source_name, target_name, bias=True, start=0):
vars, source_name = get_vars(vars, source_name)
weight = vars[source_name + "/weight"]
dic = {"weight": weight.transpose((3, 2, 0, 1))}
if bias:
dic["bias"] = vars[source_name + "/bias"]
dic_torch = {}
dic_torch[target_name + f".{start}.weight"] = torch.from_numpy(dic["weight"])
if bias:
dic_torch[target_name + f".{start + 1}.bias"] = torch.from_numpy(dic["bias"])
return dic_torch
def convert_torgb(vars, source_name, target_name):
vars, source_name = get_vars(vars, source_name)
weight = vars[source_name + "/weight"]
mod_weight = vars[source_name + "/mod_weight"]
mod_bias = vars[source_name + "/mod_bias"]
bias = vars[source_name + "/bias"]
dic = {
"conv.weight": weight.transpose((3, 2, 0, 1)),
"to_style.weight": mod_weight.transpose((1, 0)),
"to_style.bias": mod_bias + 1,
# "bias": bias.reshape((1, 3, 1, 1)), TODO: where is this?
}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + "." + k] = torch.from_numpy(v)
return dic_torch
def convert_dense(vars, source_name, target_name):
vars, source_name = get_vars(vars, source_name)
weight = vars[source_name + "/weight"]
bias = vars[source_name + "/bias"]
dic = {"weight": weight.transpose((1, 0)), "bias": bias}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + "." + k] = torch.from_numpy(v)
return dic_torch
def update(state_dict, new, strict=True):
for k, v in new.items():
if strict:
if k not in state_dict:
raise KeyError(k + " is not found")
if v.shape != state_dict[k].shape:
raise ValueError(f"Shape mismatch: {v.shape} vs {state_dict[k].shape}")
state_dict[k] = v
def discriminator_fill_statedict(statedict, vars, size):
log_size = int(math.log(size, 2))
update(statedict, convert_conv(vars, f"{size}x{size}/FromRGB", "convs.0"))
conv_i = 1
for i in range(log_size - 2, 0, -1):
reso = 4 * 2 ** i
update(
statedict,
convert_conv(vars, f"{reso}x{reso}/Conv0", f"convs.{conv_i}.conv1"),
)
update(
statedict,
convert_conv(
vars, f"{reso}x{reso}/Conv1_down", f"convs.{conv_i}.conv2", start=1
),
)
update(
statedict,
convert_conv(
vars, f"{reso}x{reso}/Skip", f"convs.{conv_i}.skip", start=1, bias=False
),
)
conv_i += 1
update(statedict, convert_conv(vars, f"4x4/Conv", "final_conv"))
update(statedict, convert_dense(vars, f"4x4/Dense0", "final_linear.0"))
update(statedict, convert_dense(vars, f"Output", "final_linear.1"))
return statedict
def fill_statedict(state_dict, vars, size):
log_size = int(math.log(size, 2))
for i in range(8):
update(state_dict, convert_dense(vars, f"G_mapping/Dense{i}", f"vectorizer.net.{i}"))
update(
state_dict,
{
"gen.initial_block": torch.from_numpy(
get_vars_direct(vars, "G_synthesis/4x4/Const/const")
)
},
)
for i in range(log_size - 1):
reso = 4 * 2 ** i
update(
state_dict,
convert_torgb(vars, f"G_synthesis/{reso}x{reso}/ToRGB", f"gen.blocks.{i}.to_rgb"),
)
update(state_dict, convert_modconv(vars, "G_synthesis/4x4/Conv", "gen.blocks.0", numeral=1))
for i in range(1, log_size - 1):
reso = 4 * 2 ** i
update(
state_dict,
convert_modconv(
vars,
f"G_synthesis/{reso}x{reso}/Conv0_up",
f"gen.blocks.{i}",
#flip=True, # TODO: why??
numeral=1
),
)
update(
state_dict,
convert_modconv(
vars, f"G_synthesis/{reso}x{reso}/Conv1", f"gen.blocks.{i}", numeral=2
),
)
'''
TODO: consider porting this, though I dont think it is necessary.
for i in range(0, (log_size - 2) * 2 + 1):
update(
state_dict,
{
f"noises.noise_{i}": torch.from_numpy(
get_vars_direct(vars, f"G_synthesis/noise{i}")
)
},
)
'''
return state_dict
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(
description="Tensorflow to pytorch model checkpoint converter"
)
parser.add_argument(
"--gen", action="store_true", help="convert the generator weights"
)
parser.add_argument(
"--channel_multiplier",
type=int,
default=2,
help="channel multiplier factor. config-f = 2, else = 1",
)
parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights")
args = parser.parse_args()
sys.path.append('scripts\\stylegan2')
import dnnlib
from dnnlib.tflib.network import generator, gen_ema
with open(args.path, "rb") as f:
pickle.load(f)
# Weight names are ordered by size. The last name will be something like '1024x1024/<blah>'. We just need to grab that first number.
size = int(generator['G_synthesis']['variables'][-1][0].split('x')[0])
g = StyleGan2GeneratorWithLatent(image_size=size, latent_dim=512, style_depth=8)
state_dict = g.state_dict()
state_dict = fill_statedict(state_dict, gen_ema, size)
g.load_state_dict(state_dict, strict=True)
latent_avg = torch.from_numpy(get_vars_direct(gen_ema, "G/dlatent_avg"))
ckpt = {"g_ema": state_dict, "latent_avg": latent_avg}
if args.gen:
g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
g_train_state = g_train.state_dict()
g_train_state = fill_statedict(g_train_state, generator, size)
ckpt["g"] = g_train_state
name = os.path.splitext(os.path.basename(args.path))[0]
torch.save(ckpt, name + ".pt")
batch_size = {256: 16, 512: 9, 1024: 4}
n_sample = batch_size.get(size, 25)
g = g.to(device)
z = np.random.RandomState(5).randn(n_sample, 512).astype("float32")
with torch.no_grad():
img_pt, _ = g(8)
utils.save_image(
img_pt, name + ".png", nrow=n_sample, normalize=True, range=(-1, 1)
)