forked from mrq/DL-Art-School
Get rid of old byol net wrapping
Simplifies and makes this usable with DLAS' multi-gpu trainer
This commit is contained in:
parent
119f17c808
commit
1a2b9fa130
|
@ -140,91 +140,21 @@ class MLP(nn.Module):
|
||||||
return self.net(x)
|
return self.net(x)
|
||||||
|
|
||||||
|
|
||||||
# A wrapper class for training against networks that do not collapse into a small-dimensioned latent.
|
|
||||||
class StructuralMLP(nn.Module):
|
|
||||||
def __init__(self, dim, projection_size, hidden_size=4096):
|
|
||||||
super().__init__()
|
|
||||||
b, c, h, w = dim
|
|
||||||
flattened_dim = c * h // 4 * w // 4
|
|
||||||
self.net = nn.Sequential(
|
|
||||||
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
|
||||||
nn.BatchNorm2d(c),
|
|
||||||
nn.ReLU(inplace=True),
|
|
||||||
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
|
||||||
nn.BatchNorm2d(c),
|
|
||||||
nn.ReLU(inplace=True),
|
|
||||||
nn.Flatten(),
|
|
||||||
nn.Linear(flattened_dim, hidden_size),
|
|
||||||
nn.BatchNorm1d(hidden_size),
|
|
||||||
nn.ReLU(inplace=True),
|
|
||||||
nn.Linear(hidden_size, projection_size)
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.net(x)
|
|
||||||
|
|
||||||
|
|
||||||
# a wrapper class for the base neural network
|
# a wrapper class for the base neural network
|
||||||
# will manage the interception of the hidden layer output
|
# will manage the interception of the hidden layer output
|
||||||
# and pipe it into the projecter and predictor nets
|
# and pipe it into the projecter and predictor nets
|
||||||
class NetWrapper(nn.Module):
|
class NetWrapper(nn.Module):
|
||||||
def __init__(self, net, projection_size, projection_hidden_size, layer=-2, use_structural_mlp=False):
|
def __init__(self, net, latent_size, projection_size, projection_hidden_size):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.net = net
|
self.net = net
|
||||||
self.layer = layer
|
self.latent_size = latent_size
|
||||||
|
|
||||||
self.projector = None
|
|
||||||
self.projection_size = projection_size
|
self.projection_size = projection_size
|
||||||
self.projection_hidden_size = projection_hidden_size
|
self.projection_hidden_size = projection_hidden_size
|
||||||
self.structural_mlp = use_structural_mlp
|
self.projector = MLP(latent_size, self.projection_size, self.projection_hidden_size)
|
||||||
|
|
||||||
self.hidden = None
|
|
||||||
self.hook_registered = False
|
|
||||||
|
|
||||||
def _find_layer(self):
|
|
||||||
if type(self.layer) == str:
|
|
||||||
modules = dict([*self.net.named_modules()])
|
|
||||||
return modules.get(self.layer, None)
|
|
||||||
elif type(self.layer) == int:
|
|
||||||
children = [*self.net.children()]
|
|
||||||
return children[self.layer]
|
|
||||||
return None
|
|
||||||
|
|
||||||
def _hook(self, _, __, output):
|
|
||||||
self.hidden = output
|
|
||||||
|
|
||||||
def _register_hook(self):
|
|
||||||
layer = self._find_layer()
|
|
||||||
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
|
||||||
handle = layer.register_forward_hook(self._hook)
|
|
||||||
self.hook_registered = True
|
|
||||||
|
|
||||||
@singleton('projector')
|
|
||||||
def _get_projector(self, hidden):
|
|
||||||
if self.structural_mlp:
|
|
||||||
projector = StructuralMLP(hidden.shape, self.projection_size, self.projection_hidden_size)
|
|
||||||
else:
|
|
||||||
_, dim = hidden.flatten(1,-1).shape
|
|
||||||
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
|
|
||||||
return projector.to(hidden)
|
|
||||||
|
|
||||||
def get_representation(self, **kwargs):
|
|
||||||
if self.layer == -1:
|
|
||||||
return self.net(**kwargs)
|
|
||||||
|
|
||||||
if not self.hook_registered:
|
|
||||||
self._register_hook()
|
|
||||||
|
|
||||||
unused = self.net(**kwargs)
|
|
||||||
hidden = self.hidden
|
|
||||||
self.hidden = None
|
|
||||||
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
|
|
||||||
return hidden
|
|
||||||
|
|
||||||
def forward(self, **kwargs):
|
def forward(self, **kwargs):
|
||||||
representation = self.get_representation(**kwargs)
|
representation = self.net(**kwargs)
|
||||||
projector = self._get_projector(representation)
|
projection = checkpoint(self.projector, representation)
|
||||||
projection = checkpoint(projector, representation)
|
|
||||||
return projection
|
return projection
|
||||||
|
|
||||||
|
|
||||||
|
@ -233,33 +163,23 @@ class BYOL(nn.Module):
|
||||||
self,
|
self,
|
||||||
net,
|
net,
|
||||||
image_size,
|
image_size,
|
||||||
hidden_layer=-2,
|
latent_size,
|
||||||
projection_size=256,
|
projection_size=256,
|
||||||
projection_hidden_size=4096,
|
projection_hidden_size=4096,
|
||||||
moving_average_decay=0.99,
|
moving_average_decay=0.99,
|
||||||
use_momentum=True,
|
use_momentum=True,
|
||||||
structural_mlp=False,
|
|
||||||
contrastive=False,
|
contrastive=False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer,
|
self.online_encoder = NetWrapper(net, latent_size, projection_size, projection_hidden_size)
|
||||||
use_structural_mlp=structural_mlp)
|
|
||||||
|
|
||||||
self.aug = PointwiseAugmentor(image_size)
|
self.aug = PointwiseAugmentor(image_size)
|
||||||
self.use_momentum = use_momentum
|
self.use_momentum = use_momentum
|
||||||
self.contrastive = contrastive
|
self.contrastive = contrastive
|
||||||
self.target_encoder = None
|
|
||||||
self.target_ema_updater = EMA(moving_average_decay)
|
self.target_ema_updater = EMA(moving_average_decay)
|
||||||
|
|
||||||
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
||||||
|
self.target_encoder = None
|
||||||
# get device of network and make wrapper same device
|
self._get_target_encoder()
|
||||||
device = get_module_device(net)
|
|
||||||
self.to(device)
|
|
||||||
|
|
||||||
# send a mock image tensor to instantiate singleton parameters
|
|
||||||
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
|
|
||||||
|
|
||||||
@singleton('target_encoder')
|
@singleton('target_encoder')
|
||||||
def _get_target_encoder(self):
|
def _get_target_encoder(self):
|
||||||
|
@ -345,7 +265,7 @@ class BYOL(nn.Module):
|
||||||
self.logs_loss = loss.detach()
|
self.logs_loss = loss.detach()
|
||||||
self.logs_closs = contrastive_loss.detach()
|
self.logs_closs = contrastive_loss.detach()
|
||||||
|
|
||||||
return loss - contrastive_los00s
|
return loss - contrastive_loss
|
||||||
|
|
||||||
def forward(self, image):
|
def forward(self, image):
|
||||||
if self.contrastive:
|
if self.contrastive:
|
||||||
|
@ -370,4 +290,4 @@ if __name__ == '__main__':
|
||||||
@register_model
|
@register_model
|
||||||
def register_pixel_local_byol(opt_net, opt):
|
def register_pixel_local_byol(opt_net, opt):
|
||||||
subnet = create_model(opt, opt_net['subnet'])
|
subnet = create_model(opt, opt_net['subnet'])
|
||||||
return BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'], contrastive=opt_net['contrastive'])
|
return BYOL(subnet, opt_net['image_size'], opt_net['latent_size'], contrastive=opt_net['contrastive'])
|
Loading…
Reference in New Issue
Block a user