Add GPT documentation

This commit is contained in:
James Betker 2022-01-01 21:00:07 -07:00
parent 2635412291
commit 2165124f19

View File

@ -1,21 +1,20 @@
import functools
import random
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedModel
from transformers import GPT2Model, GPT2Config, GPT2PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from models.tacotron2.text import symbols
from trainer.networks import register_model
from utils.audio import plot_spectrogram
from utils.util import opt_get
class ResBlock(nn.Module):
"""
Basic residual convolutional block that uses GroupNorm.
"""
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
@ -30,30 +29,10 @@ class ResBlock(nn.Module):
return F.relu(self.net(x) + x)
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//16, channels//2),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//8, channels),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
)
self.reduction = 4
def forward(self, x):
for e in self.encoder:
x = e(x)
return x
class LeanMelEncoder(nn.Module):
"""
Encodes a BxCxS MEL tensor into a latent space suitable for use with a transformer.
"""
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=1):
super().__init__()
self.channels = channels
@ -78,6 +57,14 @@ class LeanMelEncoder(nn.Module):
return x
def null_position_embeddings(range, dim):
"""
Helper method which simply returns a range-shaped tensor filled with zeros. Useful for emulating a no-effect
embedding.
"""
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class GPT2InferenceModel(GPT2PreTrainedModel):
def __init__(self, config, gpt, text_pos_emb, norm, linear):
super().__init__(config)
@ -231,23 +218,20 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
)
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class GptAsrHf2(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000, checkpointing=True,
number_text_tokens=512, start_token=511, stop_token=0, lean_encoder=False):
"""
Core module that encapsulates a set of embeddings, a MEL encoder, a GPT-style transformer and the head needed to
make its output useful.
"""
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000,
checkpointing=True, number_text_tokens=512, start_token=511, stop_token=0):
super().__init__()
self.number_text_tokens = number_text_tokens
self.start_token = start_token
self.stop_token = stop_token
self.max_symbols_per_phrase = max_symbols_per_phrase
self.model_dim = model_dim
if lean_encoder:
self.mel_encoder = LeanMelEncoder(model_dim)
else:
self.mel_encoder = MelEncoder(model_dim, resblocks_per_reduction=1)
self.mel_encoder = LeanMelEncoder(model_dim)
self.max_mel_frames = max_mel_frames // self.mel_encoder.reduction
seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames
self.gpt_config = GPT2Config(vocab_size=self.number_text_tokens,
@ -268,6 +252,7 @@ class GptAsrHf2(nn.Module):
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
self.text_solo_embedding = nn.Parameter(torch.randn(1,1,512) * self.gpt.config.initializer_range, requires_grad=True)
# Head layers
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens)
@ -278,11 +263,17 @@ class GptAsrHf2(nn.Module):
module.weight.data[module.padding_idx].zero_()
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
"""
Helper function for producing inputs and outputs for the GPT model.
"""
inp = F.pad(input, (1,0), value=start_token)
tar = F.pad(input, (0,1), value=stop_token)
return inp, tar
def get_logits(self, mel_inputs, text_emb, get_attns=False):
"""
Helper function for producing text logits.
"""
if mel_inputs is None:
emb = text_emb
mel_len = 0
@ -303,6 +294,10 @@ class GptAsrHf2(nn.Module):
return text_logits
def forward(self, mel_inputs, text_inputs, return_attentions=False):
"""
"Normal" forward pass which produces a text loss when given a MEL-encoded audio clip and transcribed text
targets.
"""
assert text_inputs.shape[1] <= self.max_symbols_per_phrase, str(text_inputs.shape[1])
assert text_inputs.max() <= self.number_text_tokens, str(text_inputs.max())
@ -317,6 +312,9 @@ class GptAsrHf2(nn.Module):
return loss_text.mean(), text_logits
def text_only(self, text_inputs):
"""
Used to train on only text inputs.
"""
assert text_inputs.shape[1] <= self.max_symbols_per_phrase, str(text_inputs.shape[1])
assert text_inputs.max() <= self.number_text_tokens, str(text_inputs.max())
@ -329,6 +327,9 @@ class GptAsrHf2(nn.Module):
return loss_text.mean(), text_logits
def inference(self, mel_inputs, do_sample=False, temperature=1.0, num_beams=8):
"""
Performs inference by transcribing mel_inputs into text. Returns the text tokens.
"""
if not hasattr(self, 'inference_model'):
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.text_pos_embedding, self.final_norm, self.text_head)
@ -369,9 +370,9 @@ def distill():
if __name__ == '__main__':
#distill()
gpt = GptAsrHf2(max_symbols_per_phrase=250, max_mel_frames=1400, layers=16, model_dim=512, heads=8, lean_encoder=True)
l = gpt(torch.randn(2,80,640), torch.randint(high=len(symbols), size=(2,80)))
gpt.text_only(torch.randint(high=len(symbols), size=(2,120)))
gpt = GptAsrHf2(max_symbols_per_phrase=250, max_mel_frames=1400, layers=16, model_dim=512, heads=8)
l = gpt(torch.randn(2,80,640), torch.randint(high=100, size=(2,80)))
gpt.text_only(torch.randint(high=100, size=(2,120)))
#start = time()
#gpt.inference(torch.randn(1,80,350), num_beams=1)