forked from mrq/DL-Art-School
Add GPT documentation
This commit is contained in:
parent
2635412291
commit
2165124f19
|
@ -1,21 +1,20 @@
|
|||
import functools
|
||||
import random
|
||||
from time import time
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedModel
|
||||
from transformers import GPT2Model, GPT2Config, GPT2PreTrainedModel
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
||||
|
||||
from models.tacotron2.text import symbols
|
||||
from trainer.networks import register_model
|
||||
from utils.audio import plot_spectrogram
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""
|
||||
Basic residual convolutional block that uses GroupNorm.
|
||||
"""
|
||||
def __init__(self, chan):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
|
@ -30,30 +29,10 @@ class ResBlock(nn.Module):
|
|||
return F.relu(self.net(x) + x)
|
||||
|
||||
|
||||
class MelEncoder(nn.Module):
|
||||
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
|
||||
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
|
||||
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
|
||||
nn.GroupNorm(channels//16, channels//2),
|
||||
nn.ReLU(),
|
||||
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
|
||||
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
|
||||
nn.GroupNorm(channels//8, channels),
|
||||
nn.ReLU(),
|
||||
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
|
||||
)
|
||||
self.reduction = 4
|
||||
|
||||
def forward(self, x):
|
||||
for e in self.encoder:
|
||||
x = e(x)
|
||||
return x
|
||||
|
||||
|
||||
class LeanMelEncoder(nn.Module):
|
||||
"""
|
||||
Encodes a BxCxS MEL tensor into a latent space suitable for use with a transformer.
|
||||
"""
|
||||
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
|
@ -78,6 +57,14 @@ class LeanMelEncoder(nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
||||
"""
|
||||
Helper method which simply returns a range-shaped tensor filled with zeros. Useful for emulating a no-effect
|
||||
embedding.
|
||||
"""
|
||||
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
||||
|
||||
|
||||
class GPT2InferenceModel(GPT2PreTrainedModel):
|
||||
def __init__(self, config, gpt, text_pos_emb, norm, linear):
|
||||
super().__init__(config)
|
||||
|
@ -231,23 +218,20 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
)
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
||||
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
||||
|
||||
|
||||
class GptAsrHf2(nn.Module):
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000, checkpointing=True,
|
||||
number_text_tokens=512, start_token=511, stop_token=0, lean_encoder=False):
|
||||
"""
|
||||
Core module that encapsulates a set of embeddings, a MEL encoder, a GPT-style transformer and the head needed to
|
||||
make its output useful.
|
||||
"""
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000,
|
||||
checkpointing=True, number_text_tokens=512, start_token=511, stop_token=0):
|
||||
super().__init__()
|
||||
self.number_text_tokens = number_text_tokens
|
||||
self.start_token = start_token
|
||||
self.stop_token = stop_token
|
||||
self.max_symbols_per_phrase = max_symbols_per_phrase
|
||||
self.model_dim = model_dim
|
||||
if lean_encoder:
|
||||
self.mel_encoder = LeanMelEncoder(model_dim)
|
||||
else:
|
||||
self.mel_encoder = MelEncoder(model_dim, resblocks_per_reduction=1)
|
||||
self.mel_encoder = LeanMelEncoder(model_dim)
|
||||
self.max_mel_frames = max_mel_frames // self.mel_encoder.reduction
|
||||
seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames
|
||||
self.gpt_config = GPT2Config(vocab_size=self.number_text_tokens,
|
||||
|
@ -268,6 +252,7 @@ class GptAsrHf2(nn.Module):
|
|||
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
|
||||
self.text_solo_embedding = nn.Parameter(torch.randn(1,1,512) * self.gpt.config.initializer_range, requires_grad=True)
|
||||
|
||||
# Head layers
|
||||
self.final_norm = nn.LayerNorm(model_dim)
|
||||
self.text_head = nn.Linear(model_dim, self.number_text_tokens)
|
||||
|
||||
|
@ -278,11 +263,17 @@ class GptAsrHf2(nn.Module):
|
|||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
||||
"""
|
||||
Helper function for producing inputs and outputs for the GPT model.
|
||||
"""
|
||||
inp = F.pad(input, (1,0), value=start_token)
|
||||
tar = F.pad(input, (0,1), value=stop_token)
|
||||
return inp, tar
|
||||
|
||||
def get_logits(self, mel_inputs, text_emb, get_attns=False):
|
||||
"""
|
||||
Helper function for producing text logits.
|
||||
"""
|
||||
if mel_inputs is None:
|
||||
emb = text_emb
|
||||
mel_len = 0
|
||||
|
@ -303,6 +294,10 @@ class GptAsrHf2(nn.Module):
|
|||
return text_logits
|
||||
|
||||
def forward(self, mel_inputs, text_inputs, return_attentions=False):
|
||||
"""
|
||||
"Normal" forward pass which produces a text loss when given a MEL-encoded audio clip and transcribed text
|
||||
targets.
|
||||
"""
|
||||
assert text_inputs.shape[1] <= self.max_symbols_per_phrase, str(text_inputs.shape[1])
|
||||
assert text_inputs.max() <= self.number_text_tokens, str(text_inputs.max())
|
||||
|
||||
|
@ -317,6 +312,9 @@ class GptAsrHf2(nn.Module):
|
|||
return loss_text.mean(), text_logits
|
||||
|
||||
def text_only(self, text_inputs):
|
||||
"""
|
||||
Used to train on only text inputs.
|
||||
"""
|
||||
assert text_inputs.shape[1] <= self.max_symbols_per_phrase, str(text_inputs.shape[1])
|
||||
assert text_inputs.max() <= self.number_text_tokens, str(text_inputs.max())
|
||||
|
||||
|
@ -329,6 +327,9 @@ class GptAsrHf2(nn.Module):
|
|||
return loss_text.mean(), text_logits
|
||||
|
||||
def inference(self, mel_inputs, do_sample=False, temperature=1.0, num_beams=8):
|
||||
"""
|
||||
Performs inference by transcribing mel_inputs into text. Returns the text tokens.
|
||||
"""
|
||||
if not hasattr(self, 'inference_model'):
|
||||
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.text_pos_embedding, self.final_norm, self.text_head)
|
||||
|
||||
|
@ -369,9 +370,9 @@ def distill():
|
|||
if __name__ == '__main__':
|
||||
#distill()
|
||||
|
||||
gpt = GptAsrHf2(max_symbols_per_phrase=250, max_mel_frames=1400, layers=16, model_dim=512, heads=8, lean_encoder=True)
|
||||
l = gpt(torch.randn(2,80,640), torch.randint(high=len(symbols), size=(2,80)))
|
||||
gpt.text_only(torch.randint(high=len(symbols), size=(2,120)))
|
||||
gpt = GptAsrHf2(max_symbols_per_phrase=250, max_mel_frames=1400, layers=16, model_dim=512, heads=8)
|
||||
l = gpt(torch.randn(2,80,640), torch.randint(high=100, size=(2,80)))
|
||||
gpt.text_only(torch.randint(high=100, size=(2,120)))
|
||||
|
||||
#start = time()
|
||||
#gpt.inference(torch.randn(1,80,350), num_beams=1)
|
||||
|
|
Loading…
Reference in New Issue
Block a user