More RAGAN fixes

This commit is contained in:
James Betker 2020-08-05 11:03:06 -06:00
parent b8a4df0a0a
commit 299ee13988
2 changed files with 5 additions and 15 deletions

View File

@ -30,10 +30,6 @@ class SRGANModel(BaseModel):
train_opt = opt['train'] train_opt = opt['train']
self.spsr_enabled = 'spsr' in opt['model'] self.spsr_enabled = 'spsr' in opt['model']
# Only pixgan and gan are currently supported in spsr_mode
if self.spsr_enabled:
assert train_opt['gan_type'] == 'pixgan' or train_opt['gan_type'] == 'gan'
# define networks and load pretrained models # define networks and load pretrained models
self.netG = networks.define_G(opt).to(self.device) self.netG = networks.define_G(opt).to(self.device)
if self.is_train: if self.is_train:
@ -488,7 +484,7 @@ class SRGANModel(BaseModel):
l_g_gan_grad = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad, True) l_g_gan_grad = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad, True)
elif self.opt['train']['gan_type'] == 'ragan': elif self.opt['train']['gan_type'] == 'ragan':
pred_g_real_grad = self.netD(self.get_grad_nopadding(var_ref)).detach() pred_g_real_grad = self.netD(self.get_grad_nopadding(var_ref)).detach()
l_g_gan = self.l_gan_w * ( l_g_gan_grad = self.l_gan_w * (
self.cri_gan(pred_g_real_grad - torch.mean(pred_g_fake_grad), False) + self.cri_gan(pred_g_real_grad - torch.mean(pred_g_fake_grad), False) +
self.cri_gan(pred_g_fake_grad - torch.mean(pred_g_real_grad), True)) / 2 self.cri_gan(pred_g_fake_grad - torch.mean(pred_g_real_grad), True)) / 2
l_g_total += l_g_gan_grad l_g_total += l_g_gan_grad
@ -629,7 +625,9 @@ class SRGANModel(BaseModel):
pred_d_fake = self.netD(fake_H).detach() pred_d_fake = self.netD(fake_H).detach()
pred_d_real = self.netD(var_ref) pred_d_real = self.netD(var_ref)
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True) l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
l_d_real_log = l_d_real
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False) l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
l_d_fake_log = l_d_fake
l_d_total = (l_d_real + l_d_fake) / 2 l_d_total = (l_d_real + l_d_fake) / 2
l_d_total /= self.mega_batch_factor l_d_total /= self.mega_batch_factor
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled: with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
@ -661,8 +659,8 @@ class SRGANModel(BaseModel):
l_d_real_grad = self.cri_grad_gan(pred_d_real_grad, real) l_d_real_grad = self.cri_grad_gan(pred_d_real_grad, real)
l_d_fake_grad = self.cri_grad_gan(pred_d_fake_grad, fake) l_d_fake_grad = self.cri_grad_gan(pred_d_fake_grad, fake)
elif self.opt['train']['gan_type'] == 'ragan': elif self.opt['train']['gan_type'] == 'ragan':
pred_g_fake_grad = self.netD_grad(self.fake_H_grad) pred_g_fake_grad = self.netD_grad(fake_H_grad)
pred_d_real_grad = self.netD_grad(self.var_ref_grad).detach() pred_d_real_grad = self.netD_grad(var_ref_grad).detach()
l_d_real_grad = self.cri_grad_gan(pred_d_real_grad - torch.mean(pred_g_fake_grad), True) l_d_real_grad = self.cri_grad_gan(pred_d_real_grad - torch.mean(pred_g_fake_grad), True)
l_d_fake_grad = self.cri_grad_gan(pred_g_fake_grad - torch.mean(pred_d_real_grad), False) l_d_fake_grad = self.cri_grad_gan(pred_g_fake_grad - torch.mean(pred_d_real_grad), False)

View File

@ -388,19 +388,12 @@ class SPSRNetSimplifiedNoSkip(nn.Module):
x_ori = x x_ori = x
for i in range(5): for i in range(5):
x = self.model_shortcut_blk[i](x) x = self.model_shortcut_blk[i](x)
x_fea1 = x
for i in range(5): for i in range(5):
x = self.model_shortcut_blk[i + 5](x) x = self.model_shortcut_blk[i + 5](x)
x_fea2 = x
for i in range(5): for i in range(5):
x = self.model_shortcut_blk[i + 10](x) x = self.model_shortcut_blk[i + 10](x)
x_fea3 = x
for i in range(5): for i in range(5):
x = self.model_shortcut_blk[i + 15](x) x = self.model_shortcut_blk[i + 15](x)
x_fea4 = x
x = self.model_shortcut_blk[20:](x) x = self.model_shortcut_blk[20:](x)
x = self.feature_lr_conv(x) x = self.feature_lr_conv(x)
@ -430,7 +423,6 @@ class SPSRNetSimplifiedNoSkip(nn.Module):
x_out = self._branch_pretrain_concat(x__branch_pretrain_cat) x_out = self._branch_pretrain_concat(x__branch_pretrain_cat)
x_out = self._branch_pretrain_HR_conv0(x_out) x_out = self._branch_pretrain_HR_conv0(x_out)
x_out = self._branch_pretrain_HR_conv1(x_out) x_out = self._branch_pretrain_HR_conv1(x_out)
######### #########
return x_out_branch, x_out, x_grad return x_out_branch, x_out, x_grad