Shuffle conditioning inputs along the positional axis to reduce fitting on prosody and other positional information

The mels should still retain some short-range positional information the model can use
for tone and frequencies, for example.
This commit is contained in:
James Betker 2021-12-20 19:05:56 -07:00
parent 53858b2055
commit 48e3ee9a5b

View File

@ -8,6 +8,7 @@ from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedM
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from models.arch_util import AttentionBlock
from models.gpt_voice.gpt_asr_hf import GPT2InferenceModel
from models.gpt_voice.mini_encoder import AudioMiniEncoder
from models.tacotron2.text import symbols
@ -15,6 +16,28 @@ from trainer.networks import register_model
from utils.util import opt_get
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=4,
num_attn_heads=4,
do_checkpointing=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
def forward(self, x):
h = self.init(x)
h = self.attn(h)
return h[:, :, 0]
class GptTtsHf(nn.Module):
NUMBER_TEXT_TOKENS = len(symbols)+1
START_TEXT_TOKEN = len(symbols)
@ -24,14 +47,14 @@ class GptTtsHf(nn.Module):
STOP_MEL_TOKEN = 8193
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_tokens=250, max_conditioning_inputs=3,
checkpointing=True, mel_length_compression=1024, max_conditioning_length=44100//256):
checkpointing=True, mel_length_compression=1024, max_conditioning_length=60):
super().__init__()
self.max_mel_tokens = max_mel_tokens
self.max_symbols_per_phrase = max_symbols_per_phrase
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.mel_length_compression = mel_length_compression
self.conditioning_encoder = AudioMiniEncoder(80, model_dim)
self.conditioning_encoder = ConditioningEncoder(80, model_dim)
self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim)
seq_length = 2+self.max_symbols_per_phrase+self.max_conditioning_inputs+self.max_mel_tokens
self.gpt_config = GPT2Config(vocab_size=self.NUMBER_MEL_CODES,
@ -54,19 +77,12 @@ class GptTtsHf(nn.Module):
tar = F.pad(input, (0,1), value=stop_token)
return inp, tar
def get_logits(self, text_inputs, cond_inputs, mel_inputs, get_attns=False):
def get_logits(self, text_inputs, cond_input, mel_inputs, get_attns=False):
text_emb = self.text_embedding(text_inputs)
conds = []
for k in range(cond_inputs.shape[1]):
conds.append(self.conditioning_encoder(cond_inputs[:, k]))
while len(conds) < self.max_conditioning_inputs:
conds.append(conds[-1])
conds = torch.stack(conds, dim=1)
cond = self.conditioning_encoder(cond_input).unsqueeze(1)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
emb = torch.cat([text_emb, conds, mel_emb], dim=1)
emb = torch.cat([text_emb, cond, mel_emb], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
if get_attns:
return gpt_out.attentions
@ -81,7 +97,7 @@ class GptTtsHf(nn.Module):
return text_logits, mel_logits
def forward(self, text_inputs, cond_inputs, mel_targets, wav_lengths, return_attentions=False):
def forward(self, text_inputs, cond_input, mel_targets, wav_lengths, return_attentions=False):
"""
Forward pass
text_inputs: long tensor, (b,t)
@ -95,18 +111,14 @@ class GptTtsHf(nn.Module):
if mel_lengths[b] < mel_targets.shape[-1]:
mel_targets[b, mel_lengths[b]:] = self.STOP_MEL_TOKEN
# Format conditioning inputs properly.
if len(cond_inputs.shape) == 3:
cond_inputs = cond_inputs.unsqueeze(1) # Format a single conditioning input as a set of {1}
if cond_inputs.shape[-1] > self.max_conditioning_length:
# Remember, that this doesn't necessarily mean that the conditioning inputs aren't mostly zero-padded, so
# skew trimming towards the front end of the clip.
rand_clip = random.randint(0, min(50, cond_inputs.shape[-1]-self.max_conditioning_length))
cond_inputs = cond_inputs[:,:,:,rand_clip:rand_clip+self.max_conditioning_length]
# Randomly permute the conditioning spectrogram, to destroy any structure present.
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])]
if cond_input.shape[-1] > self.max_conditioning_length:
cond_input = cond_input[:,:,:self.max_conditioning_length]
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_targets, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
text_logits, mel_logits = self.get_logits(text_inputs, cond_inputs, mel_inputs, get_attns=return_attentions)
text_logits, mel_logits = self.get_logits(text_inputs, cond_input, mel_inputs, get_attns=return_attentions)
if return_attentions:
return mel_logits
loss_text = F.cross_entropy(text_logits, text_targets.long())
@ -153,6 +165,6 @@ def register_gpt_tts_hf(opt_net, opt):
if __name__ == '__main__':
gpt = GptTtsHf(model_dim=1024, heads=16)
l = gpt(torch.randint(high=len(symbols), size=(2,200)),
torch.randn(2,80,800),
torch.arange(0, 80, 1, dtype=torch.float).view(1,80,1).repeat(2,1,800),
torch.randint(high=8192, size=(2,250)),
torch.tensor([150*256,195*256]))